How to translate text using browser tools
1 July 2003 Evolution of Physiological Tolerance and Performance During Freshwater Invasions
Carol Eunmi Lee, Jane Louise Remfert, Gregory William Gelembiuk
Author Affiliations +
Abstract

Invasive species that penetrate habitat boundaries are likely to experience strong selection and rapid evolution. This study documents evolutionary shifts in tolerance and performance following the invasion of fresh water by the predominantly estuarine and salt marsh copepod Eurytemora affinis. Common-garden experiments were performed on freshwater-invading (Lake Michigan) and ancestral saline (St. Lawrence marsh) populations to measure shifts in adult survival (at 0, 5, and 25 PSU), and survival during development and development time (both using full-sib clutches split across 0, 5, 15, and 25 PSU). Results showed clear evidence of heritable shifts in tolerance and performance associated with freshwater invasions. The freshwater population exhibited a gain in low-salinity tolerance and a reduction in high-salinity tolerance relative to the saline population, suggesting tradeoffs. These tradeoffs were supported by negative genetic correlations between survival at fresh (0 PSU) versus higher salinities. Mortality in response to salinity occurred primarily before metamorphosis, suggesting that selection in response to salinity had acted primarily on the early life-history stages. The freshwater population exhibited curious patterns of life-history evolution across salinities, relative to the saline population, of retarded development to metamorphosis but accelerated development from metamorphosis to adulthood. This pattern might reflect tradeoffs between development rate and survival in fresh water at the early life-history stages, but some other selective force acting on later life-history stages. Significant effects of clutch (genotype) and clutch-by-salinity interaction (G × E) on survival and development time in both populations indicated ample genetic variation as substrate for natural selection. Variation for high-salinity tolerance was present in the freshwater population despite negative genetic correlations between high- and low-salinity tolerance. Results implicate the importance of natural selection and document the evolution of reaction norms during freshwater invasions.

Carol Eunmi Lee, Jane Louise Remfert, and Gregory William Gelembiuk "Evolution of Physiological Tolerance and Performance During Freshwater Invasions," Integrative and Comparative Biology 43(3), 439-449, (1 July 2003). https://doi.org/10.1093/icb/43.3.439
Published: 1 July 2003
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top