Concern continues to grow over the negative impact of endocrine disrupting chemicals on environmental and public health. The number of identified endocrine disrupting chemicals is increasing, but biological endpoints, experimental design, and approaches for examining and assessing the impact of these chemicals are still debated. Although some workers consider endocrine disruption an “emerging science,” I argue here that it is equally, a “merging science” developing in the tradition of integrative biology. Understanding the impact of endocrine disruptors on humans and wildlife is an examination of “context dependent development” and one that Scott Gilbert predicted would require a “new synthesis” or a “revolution” in the biological sciences. Here, I use atrazine as an example to demonstrate the importance of an integrative approach in understanding endocrine disruptors.
Atrazine is a potent endocrine disruptor that chemically castrates and feminizes amphibians and other wildlife. These effects are the result of the induction of aromatase, the enzyme that converts androgens to estrogens, and this mechanism has been confirmed in all vertebrate classes examined (fish, amphibians, reptiles, birds, and mammals, including humans). To truly assess the impact of atrazine on amphibians in the wild, diverse fields of study including endocrinology, developmental biology, molecular biology, cellular biology, ecology, and evolutionary biology need to be invoked. To understand fully the long-term impacts on the environment, meteorology, geology, hydrology, chemistry, statistics, mathematics and other disciplines well outside of the biological sciences are required.