With the threat of new plant diseases on the increase, plant disease epidemiology requires research on pathogen vector movement. Here, releases were performed in planted potato fields of different ages and canopy structures, located in the Texas Panhandle, to evaluate the range of movement of the potato psyllid Bactericera cockerelli (Sulc). This insect is a known causative agent of psyllid yellows disease, and is a vector of the reported etiological agents of zebra chip disease of potato, ‘Candidatus Liberibacter solanacearum/psyllaurous.’ Based on collections of B. cockerelli immatures along transects 9 m long radiating in four cardinal directions from release points, adult females dispersed considerable distances, regardless of plant age or canopy structure. Immature abundance declined along transects and were well described by linear and nonlinear models, but abundance patterns did not differ among the different planting dates and canopy structures. However, unequal immature abundance was detected among the four cardinal directions, with more immatures generally collected along transects to the north and west of release points, opposite of prevailing winds in the area at the time of release. Plots where B. cockerelli were released had significantly lower mean potato tuber weights than control plots with no B. cockerelli. However, few plots with B. cockerelli released in them had declining trends in tuber weights with increasing distance from release points.