How to translate text using browser tools
27 March 2019 Response to a Synthetic Pheromone Source by OX4319L, a Self-Limiting Diamondback Moth (Lepidoptera: Plutellidae) Strain, and Field Dispersal Characteristics of its Progenitor Strain
Michael Bolton, Hilda L. Collins, Tracey Chapman, Neil I. Morrison, Stefan J. Long, Charles E. Linn, Anthony M. Shelton
Author Affiliations +
Abstract

The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a global pest that infests vegetable and field crops within the Brassica family. A genetically engineered strain of P. xylostella, OX4319L, carrying a ‘self-limiting’ gene, has shown potential for managing P. xylostella populations, using sustained releases of OX4319L male moths. In order for such a strain to provide control, the transgenic individuals must exhibit attraction to female P. xylostella sex pheromone and adequate dispersal in the field. In this study, we tested these key traits. First, we compared the responses of the OX4319L male moths to a synthetic female sex pheromone source in wind tunnel trials to those of males from three other strains. We found that OX4319L males responded comparably to strains of non-engineered males, with all males flying upwind towards the pheromone source. Second, we used mark-release-recapture studies of a wildtype P. xylostella strain, from which the OX4319L strain was originally developed, to assess dispersal under field conditions. Released males were recaptured using both pheromone-baited and passive traps within a 2.83 ha circular cabbage field, with a recapture rate of 7.93%. Males were recaptured up to the boundary of the field at 95 m from the central release point. The median dispersal of males was 14 m. These results showed the progenitor strain of OX4319L retained its ability to disperse within a host field. The results of these experiments are discussed in relation to the potential for the effective use of engineered male-selecting P. xylostella strains under field conditions.

© The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Michael Bolton, Hilda L. Collins, Tracey Chapman, Neil I. Morrison, Stefan J. Long, Charles E. Linn, and Anthony M. Shelton "Response to a Synthetic Pheromone Source by OX4319L, a Self-Limiting Diamondback Moth (Lepidoptera: Plutellidae) Strain, and Field Dispersal Characteristics of its Progenitor Strain," Journal of Economic Entomology 112(4), 1546-1551, (27 March 2019). https://doi.org/10.1093/jee/toz056
Received: 26 October 2018; Accepted: 21 February 2019; Published: 27 March 2019
JOURNAL ARTICLE
6 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
field dispersal
pheromone response
transgenic insect
trapping
wind tunnel
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top