Interrupting the spring incubation of Megachile rotundata (F.) with a period of low-temperature storage for synchronizing the bees' emergence with crop bloom is an essential part of M. rotundata management. Previously, we demonstrated that bees exposed to thermoperiods (TPs) during low-temperature storage have higher survival rates than bees exposed to constant temperatures. But changing the temperature in the large mass of bees commonly found in most commercial settings would place considerable stress on the chambers' refrigeration system. Reducing the difference between a TP's cryophase and thermophase would decrease the stress on the refrigeration system. Therefore, we investigated a range of TPs with cryophases (12 h) of 6, 12, or 15°C and thermophases (12 h) of 15 or 18°C and compared the survival rates of these bees against bees exposed to constant temperatures of 12, 15, or 18°C. For eye-pigmented pupae, the TP 6–18°C and the control fluctuating thermal regime (FTR; 6°C with a daily 1-h pulse at 20°C) had the highest survival rates for the 2 yr tested. For the constant-temperature storage protocols, constant 15 and 18°C were either equivalent or lower survival than the control FTR. For emergence-ready adults, the 6–18°C TP had the highest survival rates. The constant 15°C and the control FTR had equivalent survival rates. Under the current constraints imposed by a commercial chamber's refrigeration system, interrupting M. rotundata spring incubation by exposing the developing bees to constant temperatures of 15–18°C is currently the best option for commercial operations.
How to translate text using browser tools
4 March 2021
Comparison of Fluctuating Thermal Regimes and Commercially Achievable Constant-Temperature Regimes for Short-Term Storage of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae)
George D. Yocum,
Arun Rajamohan,
Joseph P. Rinehart
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 114 • No. 2
April 2021
Vol. 114 • No. 2
April 2021
insect cold storage
pollinator
thermoperiod