Plutella xylostella (L.) (Lepidoptera: Plutellidae) is one of the most destructive pests of Brassicaceae vegetables. Cantharidin is an insect-derived defensive toxin, which has been reported to have toxicity to a variety of pests and especially lepidopteran pests. Although the toxicity of cantharidin on P. xylostella has been demonstrated, there is little information available on the specific detoxification response of P. xylostella against cantharidin. This study investigates the enzymatic response (including serine/threonine phosphatases [PSPs], carboxylesterases [CarEs], glutathione-S-transferases [GSTs], and cytochrome P450 monooxygenases [P450]) in P. xylostella to the sublethal and low lethal concentrations of cantharidin (LC10 and LC25). Results showed that the inhibitory activity of PSPs was increased and then decreased in vivo, while PSPs activity could be almost completely inhibited in vitro. Interestingly, the activities of detoxification enzymes (GST, CarE, and P450) in P. xylostella displayed a trend of decreasing and then increasing after exposure to the two concentrations of cantharidin. Notably, the increase in P450 enzyme activity was the most significant. The increasing trend of detoxification enzyme activity was congruent with the recovery trend of PSPs activity. This study contributes to our understanding of the detoxification mechanism of cantharidin in P. xylostella and helps in the further development of biogenic agents.
How to translate text using browser tools
19 October 2022
The Detoxification Enzymatic Responses of Plutella xylostella (Lepidoptera: Plutellidae) to Cantharidin
Hong Sun,
Pei Wang,
Chunqi Wei,
Yifan Li,
Yalin Zhang
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 115 • No. 5
October 2022
Vol. 115 • No. 5
October 2022
detoxification enzyme
diamondback moth
P450
serine/threonine phosphatases
sublethal effect