Effects of an organophosphorus insecticide, malathion, on survivorship and lipid peroxidation of the greater wax moth, Galleria mellonella (L.), pupae were investigated by rearing the newly hatched larvae on an artificial diet containing 0.01, 0.1, 1, 10, and 100 ppm of the insecticide. As bioindicators of long-term physiological stress responses, the adult emergence rate, longevity, and fecundity associated with lipid peroxidation level and antioxidant enzyme activity in the endoparasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae) were determined by rearing the parasitoid on a factitious host, G. mellonella pupae treated with malathion. At 100 ppm, malathion significantly decreased pupation rate of G. mellonella larvae and the rate of adult emergence of the parasitoid from these pupae. This concentration resulted in a significant increase in the lipid peroxidation product malondialdehyde (MDA) in both the host and the parasitoid. Malathion at 1 and 10 ppm significantly increased pupation rate and lipid peroxidation level of G. mellonella pupae. The adult emergence rate of P. turionellae was significantly decreased from 63.7 to 20% by these concentrations, whereas MDA content was increased by two- and three-fold, respectively, compared with the control (45.3 ± 3.2 nmol/g protein). The longevity of adults was significantly extended from 52.5 ± 5.7 to 75.7 ± 6.3 d when the parasitoids emerged from host pupae exposed with 0.1 ppm malathion. At low concentrations (0.01 and 0.1 ppm), malathion significantly increased the number of eggs laid per female per day. However, the lowest concentration (0.01 ppm) had no significant effect on hatchability, whereas 0.1 ppm of the insecticide resulted in significant decrease in egg hatch compared with the control. A significant increase in total superoxide dismutase (SOD) activity for low concentrations of malathion (0.01–1 ppm) was found compared with the control. There was a significant positive correlation of SOD activities with adult longevity and fecundity. This study suggested that malathion-induced oxidative stress was causative factor in the deterioration of biological fitness and that increased SOD activities may have resulted in decreased oxidative damage, which retarded the rate of deteriorative physiological changes in P. turionellae in response to sublethal doses of malathion.
How to translate text using browser tools
1 August 2006
Malathion-Induced Oxidative Stress in a Parasitoid Wasp: Effect on Adult Emergence, Longevity, Fecundity, and Oxidative and Antioxidative Response of Pimpla turionellae (Hymenoptera: Ichneumonidae)
Kemal Büyükgüzel
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 99 • No. 4
August 2006
Vol. 99 • No. 4
August 2006
longevity
malathion
oxidative stress
Pimpla turionellae
superoxide dismutase