Aedes albopictus (Skuse) and other container-inhabiting species have become important public health concerns due to the transmission of dengue, chikungunya, and Zika viruses. Effective surveillance is dependent on the ability to collect a sufficient number of mosquitoes for population monitoring and pathogen isolation. The Biogents Sentinel (BGS) trap supplied with a proprietary human skin lure has become the standard tool for container-inhabiting Aedes species collections worldwide. Recently, R-octenol, a single isomer of the well characterized mosquito attractant octenol, was shown to greatly improve the capture rate of some Aedes species when utilized with the Center for Disease Control and Prevention (CDC) light traps and Mosquito Magnet traps. This study evaluated the effectiveness of the TrapTech lure (TT lure), containing R-octenol, alone or in combination with the human skin lure in a BGS trap to capture Ae. albopictus and other species. BGS traps with human skin lures or a combination of the two lures collected approximately twice as many Ae. albopictus females compared to those with TT lures. Unlike previous studies, baiting BGS traps with TT lures did not result in increased diversity of mosquito species, or in higher numbers of other container-inhabiting Aedes species. Although human skin lures were clearly superior to TT R-octenol lures in BGS traps, R-octenol lures are more widely available and might still be used as an alternative lure, especially when Ae. albopictus populations are high.
How to translate text using browser tools
5 June 2016
TrapTech R-Octenol Lure Does Not Improve the Capture Rates of Aedes albopictus (Diptera: Culicidae) and Other Container-Inhabiting Species in Biogents Sentinel Traps
Isik Unlu,
Ary Faraji,
Nicholas Indelicato,
Ilia Rochlin
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Medical Entomology
Vol. 53 • No. 4
July 2016
Vol. 53 • No. 4
July 2016
BGS trap
mosquito surveillance
New Jersey
olfactory kairomone
trap evaluation