Culex quinquefasciatus Say is an important disease vector throughout much of the world. Experiments were conducted to determine the effects of different larval habitat substrates on the fitness and biting efficiency of Cx. quinquefasciatus adults. Our findings indicate that the development time (egg to adult) of larvae reared in irrigation water was 8.63 d while that of larvae reared in distilled water was 17.10 d (Effect size = 0.95). However, the rate of adult emergence was similar for all the tested treatments. Furthermore, the mean weight of an egg raft varied between larval habitats: distilled water (1.83 mg), rainfall water (1.25 mg), irrigation water (1.52 mg), and sewerage water (2.52 mg) (Effect size = 0.91). But, the fecundity (eggs per female) and hatchability (%) were statistically similar in all the rearing mediums (Effect size = 0.79). Longevity of females in all the tested populations did not differ significantly (Effect size = 0.91). The mean relative growth rates of larvae reared in tap water (0.80) and distilled water (0.86) habitats were lower than growth rates in all other rearing habitats (Effect size = 0.96). The intrinsic rate of natural increase in tap water (0.27) and irrigation water (0.35) was significantly higher than that in distilled water (0.09) and sewerage water (0.16) (Effect size = 0.84). Adults reared in rain water had the highest biting efficiency among all the tested populations. These results provide useful information for the management of Cx. quinquefasciatus.
How to translate text using browser tools
25 December 2016
Larval Habitat Substrates Could Affect the Biology and Vectorial Capacity of Culex quinquefasciatus (Diptera: Culicidae)
Rizwan Mustafa Shah,
Qasim Ali,
Mehboob Alam,
Sarfraz Ali Shad,
Shahid Majeed,
Muhammad Riaz,
Muhammad Binyameen
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Medical Entomology
Vol. 54 • No. 3
May 2017
Vol. 54 • No. 3
May 2017
ecology
fitness
mosquito
public health
vectorial capacity