Indonesia has rich Anopheline (Diptera: Culicidae) mosquito species living in various types of ecosystems. The study was conducted to profile and compare Anopheles diversity, equitability, and dominance in various ecosystems using different animal-based sampling techniques. The present study analyzed a subset of data collected from a nation-wide vector and animal reservoirs survey in 2016. Analyses were restricted to three ecosystem types (forest, nonforest, and coastal areas) in Java and Sumatera Islands. A total of 5,477 Anopheles were collected by using animal-baited (n = 1,909) and animal-baited trap nets (n = 1,978), consisting of 23 Anopheline species. Overall, Anopheles vagus was the most abundant species, followed by An. subpictus and An. barbirostris. Among the three ecosystems, the forest had a higher diversity index (H′ = 1.98), but each ecosystem has its specific predominant species. Compared with the animal-baited method, the Anopheles abundance collected by animal-baited trap nets was two-fold higher. Ecosystem, elevation, and sampling methods were associated with the abundance of female Anopheles (P-value < 0.001). Our findings revealed that Anopheles were found in a different ecosystem, indicating the potential of malaria transmission.This suggests that improved malaria vector surveillance is essential in all types of ecosystem. Furthermore, the study suggested that animal-baited trap nets could be used as the standard method of outdoor resting sampling in Indonesia in addition to the traditional human landing collection approach.
How to translate text using browser tools
10 December 2021
Anopheline Diversity in Indonesia: An Evaluation of Animal-Baited Sampling Techniques
Joni Hendri,
Endang Puji Astuti,
Heni Prasetyowati,
Pandji Wibawa Dhewantara,
Upik Kesumawati Hadi
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Medical Entomology
Vol. 59 • No. 2
March 2022
Vol. 59 • No. 2
March 2022
abundance
animal-baited
Anopheles
diversity
ecosystem