BioOne.org will be down briefly for maintenance on 12 February 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
24 November 2022 EARLY EFFECTS OF THE LATE PALEOZOIC CLIMATE TRANSITION ON SOIL ECOSYSTEMS OF THE APPALACHIAN BASIN (CONEMAUGH, MONONGAHELA, AND DUNKARD GROUPS): EVIDENCE FROM ICHNOFOSSILS
Daniel I. Hembree
Author Affiliations +
Abstract

The late Paleozoic transition is well represented by the upper Pennsylvanian to lower Permian Conemaugh, Monongahela, and Dunkard groups of the western Appalachian Basin (U.S.A.). These units contain abundant paleosols possessing suites of ichnofossils that serve as indicators of soil moisture, soil organic content, water table level, precipitation, and landscape stability. Analysis of these units can, therefore, be used to refine the details of how late Paleozoic terrestrial landscapes changed through time. A study along a 50 km west-east and a 40 km north-south transect through southeast Ohio and southwest West Virginia resulted in the recognition of 24 pedotypes with distinct ichnofossil assemblages. Ichnofossils include rhizoliths, Planolites, Palaeophycus, Taenidium, Scoyenia, Macanopsis, Skolithos, Cylindricum, cf. Psilonichnus, Arenicolites, mottles, and coprolites produced by various plants, gastropods, and larval-to-adult soil arthropods. Soil-forming environments include palustrine, levee, proximal to distal floodplain, interfluve, backswamp, marsh, and fen settings. An up-section shift in pedotypes from Argillisols to Vertisols and Calcisols as well as an overall increase in the diversity of pedotypes recorded a change in soil-forming conditions, resulting in a diverse landscape that changed significantly as mean annual precipitation rose and fell. An up-section increase in ichnofossil diversity in the paleosols and changes in ichnocoenoses suggests an increased dependence on the soil as a refuge and as a food resource. Overall, growing instability of the climate during the Pennsylvanian–Permian transition led to a more heterogeneous landscape that helped to promote colonization of a more diverse assemblage of soil organisms.

Copyright © 2022, SEPM (Society for Sedimentary Geology)
Daniel I. Hembree "EARLY EFFECTS OF THE LATE PALEOZOIC CLIMATE TRANSITION ON SOIL ECOSYSTEMS OF THE APPALACHIAN BASIN (CONEMAUGH, MONONGAHELA, AND DUNKARD GROUPS): EVIDENCE FROM ICHNOFOSSILS," PALAIOS 37(11), 671-690, (24 November 2022). https://doi.org/10.2110/palo.2021.071
Received: 31 December 2021; Accepted: 21 September 2022; Published: 24 November 2022
JOURNAL ARTICLE
20 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top