Specimens of malignant and normal female human breast tissues were analyzed after surgery by means of synchronous luminescence spectroscopy. Measurements were performed in the ranges of excitation wavelengths from 330 to 650 nm and synchronous wavelengths from 30 to 120 nm to obtain ordinary and first derivative three-dimensional total synchronous luminescence spectra (3d-TSLS) of each specimen. Arithmetic mean of these spectra has been calculated for normal and malignant specimens and analyzed to establish criteria for tissue differentiation. Spectral domain volumes (volumes below luminescence intensity surface) and mean spectral slopes have been calculated and also analyzed as tissue discrimination criteria. The obtained results are discussed in view of the possible relevance of synchronous luminescence spectroscopy in discrimination between normal and malignant breast tissue.