BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 November 2005 Photochemical Reactivity of Trifluoromethyl Aromatic Amines: The Example of 3,5-diamino-trifluoromethyl-benzene (3,5-DABTF)
Philippe Chaignon, Sylvie Cortial, Vincent Guerineau, Marie-Thérèse Adeline, Charles Giannotti, Gérard Fan, Jamal Ouazzani
Author Affiliations +
Abstract

This work presents the application of an on-line photoreactor to the detection of 3,5-diamino-trifluoromethyl-benzene (3,5-DABTF) in aqueous solutions. When irradiated at 310 nm, this compound is defluorinated to 3,5-diaminobenzoic acid by a nucleophilic substitution of the fluoride by water. Concomitantly, defluorination intermediates polymerize through amide bonds to give dark-colored compounds. We take advantage of the photocatalyzed defluorination and the subsequent decrease in pH to develop an original and specific photoreactor. Continuous recording of pH and temperature in the outlet of the reactor by a dual electrode gives us an opportunity to optimize the system. In the photoreactor, 3,5-DABTF is immediately and totally transformed as attested by the rapid drop of the flowing solution pH from 6.2 to 3.2 and the chromatographic analysis of the outgoing solutions. The detection remains effective from 1 to 1000 parts per million.

Philippe Chaignon, Sylvie Cortial, Vincent Guerineau, Marie-Thérèse Adeline, Charles Giannotti, Gérard Fan, and Jamal Ouazzani "Photochemical Reactivity of Trifluoromethyl Aromatic Amines: The Example of 3,5-diamino-trifluoromethyl-benzene (3,5-DABTF)," Photochemistry and Photobiology 81(6), 1539-1543, (1 November 2005). https://doi.org/10.1562/2005-08-03-RA-637
Received: 3 August 2005; Accepted: 1 August 2005; Published: 1 November 2005
JOURNAL ARTICLE
5 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top