Global energy demand is predicted to increase dramatically, suggesting the need to understand the role of disturbance from energy development better and to develop more efficient conservation strategies for affected wildlife populations. We evaluated elk (Cervus elaphus) response to disturbance associated with natural gas development in summer and winter, including shifts in resource selection and concomitant distribution. We collected elk locations prior to (1992–1995) and during (2008–2010) coal bed natural gas (CBNG) development in the ∼ 498-km2 Fortification Creek Area (FCA) of northeastern Wyoming, USA, where approximately 700 CBNG wells and 542 km of collector, local, and resource roads were developed from 2000 through 2010. We developed resource selection functions for summer and winter using coordinate data from VHF-collared female elk prior to CBNG development and similar location data from GPS-collared female elk during CBNG development to assess spatial selection shifts. By pooling across all locations we created population level models for each time period (e.g., pre- and during development) and incorporated individual variation through bootstrapping standard errors for parameter estimates. Comparison of elk resource selection prior to and during natural gas development demonstrated behavioral and distributional shifts whereby during development, elk demonstrated a higher propensity to use distance and escape cover to minimize exposure to roads. Specifically, during-development elk selected areas with greater Rocky Mountain juniper (Juniperus scopulorum Sarg.) cover, increased terrain ruggedness, and farther from CBNG roads than prior to development. Elk distributional changes resulting from avoidance behavior led to a loss of high-use areas by 43.1% and 50.2% in summer and winter, respectively. We suggest reducing traffic, protecting woody escape cover, and maintaining refugia within the energy-development footprint to promote persistence of elk within energy fields.