Geomorphic reclamation creates variable topography and surface architecture, including rolling hillslopes and drainages. In contrast, traditional methods of reclamation result in landscapes susceptible to erosion due to steep, linear gradients. Geomorphic approaches to surface mine reclamation are relatively new, and hypotheses suggest the use of geomorphic principles in reclamation will improve vegetation outcomes relative to traditional methods. Topographic variability created by geomorphic reclamation likely results in more environmental heterogeneity, which should correlate with greater plant diversity. We examined revegetation outcomes of traditional and geomorphic reclamation on two reclaimed surface mines in Wyoming using nadir image sampling. Functional group diversity and measures of cover were compared between reclamation methods and undisturbed rangeland. Geomorphic reclamation supported greater total richness and greater native functional group richness relative to traditional reclamation. Native species cover on geomorphic reclamation, particularly for native perennial grasses, was either similar to undisturbed rangeland or greater than undisturbed rangeland and traditional reclamation. Reclamation shrub cover differed significantly from undisturbed sites, but was greater in geomorphic treatments. Results of nadir image analysis are compared to line-point intercept data from the same locations and outcomes are discussed in light of different reclamation techniques and sampling methods. Significant differences in cover categories were observed between nadir image and line-point intercept methods, however both methods revealed similar patterns between study sites.
How to translate text using browser tools
3 September 2020
Monitoring Geomorphic and Traditional Post-Mine Reclamation Using Digital Imagery: Vegetative Heterogeneity and Sampling Efficiency
Kurt R. Fleisher,
Kristina M. Hufford
ACCESS THE FULL ARTICLE
Functional group richness
Geomorphic reclamation
Nadir image monitoring
SamplePoint