How to translate text using browser tools
8 April 2019 Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation
Abstract

Several grass and broadleaf weed species around the world have evolved multiple-herbicide resistance at alarmingly increasing rates. Research on the biochemical and molecular resistance mechanisms of multiple-resistant weed populations indicate a prevalence of herbicide metabolism catalyzed by enzyme systems such as cytochrome P450 monooxygenases and glutathione S-transferases and, to a lesser extent, by glucosyl transferases. A symposium was conducted to gain an understanding of the current state of research on metabolic resistance mechanisms in weed species that pose major management problems around the world. These topics, as well as future directions of investigations that were identified in the symposium, are summarized herein. In addition, the latest information on selected topics such as the role of safeners in inducing crop tolerance to herbicides, selectivity to clomazone, glyphosate metabolism in crops and weeds, and bioactivation of natural molecules is reviewed.

© Weed Science Society of America, 2019.
"Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation," Weed Science 67(2), 149-175, (8 April 2019). https://doi.org/10.1017/wsc.2018.88
Received: 2 July 2018; Accepted: 6 November 2018; Published: 8 April 2019
KEYWORDS
crop tolerance
cytochrome P450
glutathione
glutathione S-transferase
herbicide safener
natural phytotoxin
oxylipin
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top