How to translate text using browser tools
28 April 2020 Limited Induction of Ethylene and Cyanide Synthesis are Observed in Quinclorac-Resistant Barnyardgrass (Echinochloa crus-galli) in Uruguay
Manuel Diez Vignola, Martha Sainz, Néstor E. Saldain, Claudia Marchesi, Victoria Bonnecarrère, Pedro Díaz Gadea
Author Affiliations +
Abstract

Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv] is the foremost weed in rice (Oryza sativa L.) systems, and its control is crucial to successful rice production. Quinclorac, a synthetic auxin herbicide, has been used effectively to manage E. crus-galli. However, occurrences of quinclorac-resistant genotypes are frequently reported, and its resistance evolution has led to questions about the continued utility of quinclorac for grass control. Identification of the resistance mechanism(s) of resistant genotypes will facilitate development of integrated weed management strategies that sustain quinclorac use for management of E. crus-galli. We evaluated the responses to quinclorac of two contrasting genotypes: E7 (resistant, R) and LM04 (susceptible, S). Quinclorac induced ethylene and cyanide biosynthesis in the S-genotype. Both genotypes responded similarly to an increasing application of exogenous 1-carboxylic acid aminocyclopropane (ACC) and potassium cyanide, and their growth was inhibited at higher doses. The key mechanism for cyanide (HCN) detoxification in plants, β-cyanoalanine synthase (β-CAS) activity, was evaluated in both genotypes, and no significant difference was observed in the basal activity. However, quinclorac significantly induced β-CAS–like activity in the S-genotype, which is consistent with the increased synthesis of ethylene and cyanide. This work suggests that the resistance to quinclorac of the E7 R-genotype is likely related to an alteration in the auxin signal transduction pathway, causing a lower stimulation of ACC synthase and, therefore, limited synthesis of ethylene and HCN after quinclorac treatment.

© Weed Science Society of America, 2020.
Manuel Diez Vignola, Martha Sainz, Néstor E. Saldain, Claudia Marchesi, Victoria Bonnecarrère, and Pedro Díaz Gadea "Limited Induction of Ethylene and Cyanide Synthesis are Observed in Quinclorac-Resistant Barnyardgrass (Echinochloa crus-galli) in Uruguay," Weed Science 68(4), 348-357, (28 April 2020). https://doi.org/10.1017/wsc.2020.32
Received: 20 November 2019; Accepted: 21 April 2020; Published: 28 April 2020
KEYWORDS
Auxin herbicide
resistance
rice
β-cyanoalanine synthase
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top