In the mid-Atlantic region, there is increasing interest in the use of intercropping strategies to establish cover crops in corn cropping systems. However, intercropping may be limited by potential injury to cover crops from residual herbicide programs. Field experiments were conducted from 2013 to 2015 at Pennsylvania, Maryland, and New York locations (n = 8) to evaluate the effect of common residual corn herbicides on interseeded red clover and annual ryegrass. Cover crop establishment and response to herbicide treatments varied across sites and years. S-metolachlor, pyroxasulfone, pendimethalin, and dimethenamid-P reduced annual ryegrass biomass relative to the nontreated check, whereas annual ryegrass biomass in acetochlor treatments was no different compared with the nontreated check. The rank order of observed annual ryegrass biomass reduction among chloroacetamide herbicides was S-metolachlor>pyroxasulfone>dimethenamid-P>acetochlor. Annual ryegrass biomass was not reduced by any of the broadleaf control herbicides. Mesotrione reduced red clover biomass 80% compared to the nontreated check. No differences in red clover biomass were observed between saflufenacil, rimsulfuron and atrazine treatments compared to the nontreated check. Red clover was not reduced by any of the grass control herbicides. This research suggests that annual ryegrass and red clover can be successfully interseeded in silt loam soils of Pennsylvania following use of several shorter-lived residual corn herbicides, but further research is needed in areas with soil types other than silt loam or outside of the mid-Atlantic cropping region.
Nomenclature: acetochlor; atrazine; dimethenamid-P; isoxaflutole; mesotrione; pendimethalin; pyroxasulfone; rimsulfuron; saflufenacil; S-metolachlor; annual ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot; red clover, Trifolium pratense L.