There has been an increasing interest in characterizing and mapping isolated depressional wetlands due to a 2001 U.S. Supreme Court decision that effectively removed their protected status. Our objective was to determine the utility of satellite remote sensing to accurately detect isolated wetlands. Image segmentation and object-oriented analysis were applied to Landsat-7 imagery from January and October 2000 to map isolated wetlands in the St. Johns River Water Management District of Alachua County, Florida. Accuracy for individual isolated wetlands was determined based on the intersection of reference and remotely sensed polygons. The January data yielded producer and user accuracies of 88% and 89%, respectively, for isolated wetlands larger than 0.5 acres (0.20 ha). Producer and user accuracies increased to 97% and 95%, respectively, for isolated wetlands larger than 2 acres (0.81 ha). Recently, the Federal Geographic Data Committee recommended that all U.S. wetlands 0.5 acres (0.20 ha) or larger should be mapped using 1-m aerial photography with an accuracy of 98%. That accuracy was nearly achieved in this study using a spatial resolution that is 900 times coarser. Satellite remote sensing provides an accurate, relatively inexpensive, and timely means for classifying isolated depressional wetlands on a regional or national basis.
How to translate text using browser tools
1 September 2009
Satellite Remote Sensing of Isolated Wetlands Using Object-Oriented Classification of Landsat-7 Data
Robert C. Frohn,
Molly Reif,
Charles Lane,
Brad Autrey
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Wetlands
Vol. 29 • No. 3
September 2009
Vol. 29 • No. 3
September 2009
detection
Imagery
mapping
segmentation