Translator Disclaimer
9 June 2011 Meiotic behaviour, karyotype analyses and pollen viability in species of Tamarix (Tamaricaceae)
Author Affiliations +
Abstract

This study elucidates cytological aspects of the complex genus Tamarix (Tamaricaceae). Chromosome counts were performed and meiotic behaviour recorded on 30 accessions belonging to 15 taxa and three putative hybrids from different parts of Iran. Karyotype data were analysed in five species. Both gametic and somatic chromosome counts showed most species are diploid (n = 12 and 2n = 24), but polyploidy (n = 24 and 2n = 36) was found in six taxa. All the studied species showed predominance of submetacentric chromosomes and a lower proportion of metacentric pairs. The chromosomes in studied species were found to be small with a mean chromosome length of 1.05 to 2.8 µm. Karyotype analyses showed different formulas from 12sm to 7m 5sm. Pollen viability in most species was more than 79 %, with low viability (28.5 %) observed only in T. cf. kermanensis, as a triploid taxon. This study reveals that polyploidy and hybridization could be important reasons for taxonomic complexity in Tamarix. Hybridization and the high chance of establishing hybrids by vegetative reproduction are major adaptive mechanisms in the successful growing, dispersal and probable rapid evolution of this genus in its native range. Furthermore these mechanisms could facilitate the spreading of Tamarix species outside their native range as aggressive invasive plants.

See the PDF.

References

  1. H. Akhani 2006: Biodiversity of halophytic and sabkha ecosystems in Iran. — Pp. 71–88 in: A. Khan , B. A. Böer , G. S. Kust & H.-J. Barth , (eds.), Sabkha Ecosystems, 2: West central Asia. — Dordrecht: Springer. Google Scholar

  2. B. R. Baum 1967: A new species of Tamarix from southeastern Iran. —  Österr. Bot. Z. 114: 379–382. Google Scholar

  3. B. R. Baum 1978: The genus Tamarix. — Jerusalem: The Israel Academy of Science and Humanities. Google Scholar

  4. Z. P. Bochantseva 1972: O chislakh chromosom. — Introd. Aklim. Rast. Akad. Nauk Uzbek. SSR. 9: 45–53. [In Russian]. Google Scholar

  5. W. M. Bowden 1945: A list of chromosome numbers in higher plants. II. Menispermaceae to Verbenaceae. —  Amer. J. Bot. 32: 191–201. Google Scholar

  6. A. V. Bunge 1852: Tentamen generis Tamaricum — Dorpati: Officina Academica Viduae J. C. Schuenmanni et C. Mattieseni. Google Scholar

  7. A. Dafni & D. Firmage 2000: Pollen viability and longevity: practical, ecological and evolutionary implications. —  Pl. Syst. Evol. 222: 113–132. Google Scholar

  8. N. C. Ellstrand & K. A. Schierenbeck 2000: Hybridization as a stimulus for the evolution of invasiveness in plants? —  PNAS 9: 7043–7050. Google Scholar

  9. A. A. Fedorov (ed.) 1974: Chromosome numbers of flowering plants. — Leningrad: Nauka. Google Scholar

  10. J. F. Gaskin 2003a: Tamaricaceae. — Pp. 363–368 in: K. Kubitzki & C. Bayer (eds.), The Families and Genera of Vascular plants 5. — Springer: Heidelberg. Google Scholar

  11. J. F. Gaskin 2003b: Molecular systematic and the control of invasive plants: A case study of Tamarix (Tamaricaceae). —  Ann. Missouri Bot. Gard. 90: 109–118. Google Scholar

  12. J. F. Gaskin & B. A. Schaal 2002: Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. —  PNAS 99: 11256–11259. Google Scholar

  13. J. F. Gaskin & B. A. Schaal 2003: Molecular phylogeny investigation of U.S. invasive Tamarix. — Syst. Bot. 28: 86–95. Google Scholar

  14. J. F. Gaskin & P. B. Shafroth 2005: Hybridization of Tamarix ramosissima and T. chinensis (saltcedars) with T. aphylla (athel) (Tamaricaceae) in the southwest USA determined from DNA sequence data. —  Madroño , 52: 1–10. Google Scholar

  15. P. Goldblatt & D. E. Johnson 1994: Index to plant chromosome numbers 1990–1991. — Monogr. Syst. Bot. Missouri Bot. Gard. 51: 211. Google Scholar

  16. M. Guerra 1999: Hematoxylin: a simple, multiple-use dye for chromosome analysis. —  Gen. Mol. Biol. 22: 77–80. Google Scholar

  17. J. S. Horton , F. C. Mounts & J. M. Kraft 1960: Seed germination and seedling establishment of phreatophyte species. — Rocky Mountain Forest and Range Experiment Station Paper 48. Fort Collins, Colorado. 26 pp. Google Scholar

  18. S. Khatoon & S. I. Ali 1993: Chromosome Atlas of the Angiosperms of Pakistan. — Karachi: BCC & T Press, University of Karachi. Google Scholar

  19. A. Levan , K. Fredga & A. A. Sandberg 1964: Nomenclature for centromeric position on chromosomes — Hereditas 52: 201–220. Google Scholar

  20. D. A. Levin 2002: The Role of Chromosomal Change in Plant Evolution. — New York: Oxford University Press. Google Scholar

  21. de V. M. Oliveira , E. R. Forni-Martins & J. Semir 2007: Cytotaxonomy of species of Vernonia, section Lepidaploa, group Axilliflorae (Asteraceae, Vernonieae). —  Bot. J. Linn. Soc. 154: 99–108. Google Scholar

  22. A. Petrova , J. Zieliński & R. Natcheva 2006: Reports (1584–1603). — Pp. 431–442 in: G. Kamari , C. Blanché & F. Garbari (ed.), Mediterranean chromosome number reports 16. — Fl. Medit. 16: 385–455. Google Scholar

  23. M. Qaiser 1976: Biosystematic study of the family Tamaricaceae from Pakistan. — Phd. Thesis, Department of Botany, University of Karachi. Google Scholar

  24. J. Ramsey & D. W. Schemske 2002: Neopolyploidy in flowering plants. —  Annual Rev. Ecol. Syst. 33: 589–639. Google Scholar

  25. A. Reeves 2001: Micromeasure: A new computer program for the collection and analysis of cytogenetic data. —  Genome 44: 439–443. Google Scholar

  26. C. Romero Zarco 1986: A new method for estimating karyotype asymmetry. —  Taxon 35: 526–530. Google Scholar

  27. I.I. Rusanovich 1986: Hybridization and its role in speciation in the genus Tamarix L. — Pp. 84–85 in: Sovremennye Problemy Filoghenii Rasteniy. Moscow. [In Russian]. Google Scholar

  28. J. G. Seijo & A. Fernández 2003: Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). —  Amer. J. Bot. 90: 980–987. Google Scholar

  29. A. K. Sharma & A. Sharma 1972: Chromosome Techniques: Theory and Practice. — London, Butterworths: University Park Press. Google Scholar

  30. F. E. Smeins 2003: History and ecology of saltcedar (Tamarix) — Pp. 2–9 in: Proceeding of Saltcedar and Water Resources in the West Symposium. — San Angelo: San Angelo Convention Center. Google Scholar

  31. H. E. Smith 1946: Sedum pulchellum: A physiological and morphological comparison of diploid, tetraploid, and hexaploid races. —  Bull. Torrey Bot. Club. 73: 495–541. Google Scholar

  32. G. L. Stebbins 1971: Chromosome evolution in higher plants. — Edward Arnold Ltd., London, UK. Google Scholar

  33. C. R. Whitcraft , D. M. Tally , J. A. Crooks , J. Boland & J. Gaskin 2007: Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh. —  Biol. Invas. 9: 875–879. Google Scholar

  34. S. H. Zhai & M. X. Li 1986: Chromosome number of Tamarix L. — Acta Phytotax. Sin. 24: 237–274. Google Scholar

  35. T. Zielinski 1994: Tamarix — Pp. 30–34 in: Browicz (ed.), Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions 10. — Poznań: Polish Academy of Sciences. Google Scholar

© 2013 BGBM Berlin-Dahlem.
Nafiseh Samadi, Seyed Mahmood Ghaffari, and Hossein Akhani "Meiotic behaviour, karyotype analyses and pollen viability in species of Tamarix (Tamaricaceae)," Willdenowia 43(1), (9 June 2011). https://doi.org/10.3372/wi.43.43121
Published: 9 June 2011
JOURNAL ARTICLE
9 PAGES


SHARE
ARTICLE IMPACT
Back to Top