Translator Disclaimer
1 December 2002 Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a Rhinolophoid: Molecular Evidence from Cytochrome b
Author Affiliations +
Abstract

Craseonycteris thonglongyai (Chiroptera: Craseonycteridae), an enigmatic taxon which shares morphological traits with both Rhinopomatidae and Emballonuridae was for the first time investigated with the aid of molecular phylogenetic techniques. Three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian phylogenetics were used. Based on 402 bp of DNA sequence from the mitochondrial cytochrome b gene, placement of Craseonycteridae within the superfamily Rhinolophoidea was demonstrated. Our results also suggest close proximity of Craseonycteridae to Hipposideridae rather than to Rhinopomatidae, close relationships between Megadermatidae and Rhinolophidae, sister group position of Pteropodidae to Rhinolophoidea, and closer affiliation of Nycteridae with the infraorder Yangochiroptera. Spectral analysis was in agreement with all these outcomes except for closer relationships of Craseonycteris with Rhinopomatidae.

LITERATURE CITED

1.

P. J. J. Bates , T. Nwe , K. M. Swe , and S. S. H. Bu . 2001. Further new records of bats from Myanmar (Burma), including Craseonycteris thonglongyai Hill, 1974 (Chiroptera: Craseonycteridae). Acta Chiropterologica, 3: 33–41. Google Scholar

2.

W. Bogdanowicz, and R. D. Owen. 1998. In the Minotaur's labyrinth: phylogeny of the bat family Hipposideridae. Pp. 27–42, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp. Google Scholar

3.

M. A. Charleston 1998. Spectrum: spectral analysis of phylogenetic data. Bioinformatics, 14: 98–99. Google Scholar

4.

G. B. Corbet , and J. E. Hill . 1992. The Mammals of the Indomalayan Region: a systematic review. Natural History Museum Publishing, Oxford University Press, Oxford, 488 pp. Google Scholar

5.

N. Daugbjerg , and R. A. Andersen . 1997. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. Molecular Biology and Evolution, 14: 1242–1251. Google Scholar

6.

B. Efron , E. Halloran , and S. Holmes . 1996. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science of the USA, 93: 13429–13434. Google Scholar

7.

D. P. Faith 1991. Cladistic tests for monophyly and nonmonophyly. Systematic Zoology, 40: 366–375. Google Scholar

8.

D. P. Faith , and P. S. Cranston . 1991. Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics, 7: 1–28. Google Scholar

9.

J. Felsenstein 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368–376. Google Scholar

10.

N. Goldman , J. P. Anderson , and A. G. Rodrigo . 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology, 49: 652–670. Google Scholar

11.

S. J. Hand, and J. A. W. Kirsch. 1998. A southern origin of the Hipposideridae (Microchiroptera)? Evidence from the Australian fossil record. Pp. 72–90, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp. Google Scholar

12.

M. Hasegawa , H. Kishino , and T. Yano . 1985. Dating of the human—ape splitting by the molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160–174. Google Scholar

13.

M. D. Hendy , and D. Penny . 1993. Spectral analysis of phylogenetic data. Journal of Classification, 10: 5–24. Google Scholar

14.

J. E. Hill 1974. A new family, genus and species of bat (Mammalia: Chiroptera) from Thailand. Bulletin of British Museum (Natural History), Zoology, 27: 301–336. Google Scholar

15.

J. E. Hill 1982. A review of the leaf-nosed bats Rhinonycteris, Cleotis and Triaenops (Chiroptera, Hipposideridae). Bonner zoologische Beiträ ge, 33: 165–186. Google Scholar

16.

J. E. Hill, and S. E. Smith 1981. Craseonycteris thonglongyai. Mammalian Species, 160: 1–4. Google Scholar

17.

D. M. Hillis , and J. J. Bull . 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Systematic Biology, 42: 182–192. Google Scholar

18.

D. M. Hillis , and J. P. Huelsenbeck . 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity, 83: 189–195. Google Scholar

19.

A. R. Hoelzel, and A. Green. 1992. Analysis of population-level variation by sequencing PCRamplified DNA. Pp. 159–187, in Molecular genetic analysis of populations: a practical approach ( A. R. Hoelzel, ed.). Oxford University Press, New York, 468 pp. Google Scholar

20.

I. Horáček 2001: On the early history of vespertilionid bats in Europe: the Lower Miocene record from the Bohemian Massif. Lynx (N.S.), 32: 123–154 Google Scholar

21.

X. Huang 1992. A contig assembly program based on sensitive detection of fragment overlaps. Genomics, 14: 18–25. Google Scholar

22.

J. P. Huelsenbeck , and F. R. Ronquist . 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755. Google Scholar

23.

J. P. Huelsenbeck , F. Ronquist , R. Nielsen , and J. P. Bollback . 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294:2310–2314. Google Scholar

24.

K. E. Jones , A. Purvis , A. Maclarnon , O. R. Bininda-Emonds , and N. B. Simmons . 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews of the Cambridge Philosophical Society, 77: 223–259. Google Scholar

25.

J. B. Juste , Y. Álvarez , E. Tabarés , A. Garridopertierra , C. Ibáñez , and J. M. Bautista . 1999. Phylogeography of African fruitbats (Megachiroptera). Molecular Phylogenetics and Evolution, 13: 596–604. Google Scholar

26.

M. Kennedy , A. M. Paterson , J. C. Morales , S. Parsons , A. P. Winnington , and H. G. Spencer . 1999. The long and short of it: branch lengths and the problem of placing the New Zealand short-tailed bat, Mystacina. Molecular Phylogenetics and Evolution, 13: 405–416. Google Scholar

27.

J. A. W. Kirsch , and J. M. Hutcheon . 1997. Further on the possibility that microchiropteran are paraphyletic. Bat Research News, 37: 138. Google Scholar

28.

J. A. W. Kirsch , and J. D. Pettigrew . 1998. Base compositional biases and bat problem. II DNAhybridization trees based on tracers enriched for AT- or CG-content. Philosophical Transactions, Biological Sciences, 353: 381–388. Google Scholar

29.

H. Kishino , and M. Hasegawa . 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution, 29: 170–179. Google Scholar

30.

K. F. Koopman, 1993. Order Chiroptera. Pp. 137–241, in Mammal species of the world: a taxonomic and geographic reference ( D. E. Wilson and D. M. Reeder, eds.). 2nd ed. Smithsonian Institution Press, Washington, D.C., 1206 pp. Google Scholar

31.

K. F. Koopman , 1994. Chiroptera: systematics. Handbuch der Zoologie, VIII, Mammalia, Part 60. Walter de Gruyter, Berlin, 216 pp. Google Scholar

32.

S. Kumar , K. Tamura , I. B. Jakobsen , and M. Nei . 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics, 17: 1244–1245. Google Scholar

33.

B. Lekagul , and J. A. Mcneely . 1977. Mammals of Thailand. Sahakarnbhat, Bangkok, 758 pp. Google Scholar

34.

E. Margoliash 1963. Primary structure and evolution of cytochrome c. Proceedings of the National Academy of Science of the USA, 50: 672–679. Google Scholar

35.

C. McCarthy 1996. Chromas, version 1.4, School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Queensland. Google Scholar

36.

G. S. Miller JR . 1907. The families and genera of bats. Smithsonian Institute Bulletin, 57: 1–282. Google Scholar

37.

W. J. Murphy, E. Eizirik, W. E. Johnson, Y. P. Zhang, O. A. Ryder, and S. J. O'Brien. 2001a. Molecular phylogenetics and the origins of placental mammals. Nature, 409: 614–618. Google Scholar

38.

W. J. Murphy, E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. De Jong, and M. S. Springer. 2001b. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294: 2348–2351. Google Scholar

39.

M. Nei , and S. Kumar . 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, 335 pp. Google Scholar

40.

M. Nikaido , K. Kawai , Y. Cao , M. Harada , S. Tomita , N. Okada , and M. Hasegawa . 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. Journal of Molecular Evolution, 53: 508–516. Google Scholar

41.

R. M. Nowak 1997. Mammals of the world. Johns Hopkins University Press, Baltimore, 1629 pp. Google Scholar

42.

R. D. M. Page , and E. C. Holmes . 2000. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford, 346 pp. Google Scholar

43.

D. Posada , And Crandall , K. A . 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818. Google Scholar

44.

J. A. Rémy , J.-Y Crochet , B. Sigé , J. Sudre , L. De Bonis , M. Vianey-Liaud , M. Godinot , J.-L. Hartenberger , B. Lange-Badré , and B. Comte . 1987. Biochronologie des phosphorites du Quercy: Mise à jour des listes fauniques et nouveaux gisements de mammifères fossiles. Müncher Geowissenschafte Abhandlungen (A), 10: 169–188. Google Scholar

45.

N. B. Simmons 1998. A reappraisal of interfamilial relationship of bats. Pp. 3–26, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp. Google Scholar

46.

N. B. Simmons , and J. H. Geisler . 1998. Phylogenetic relationship of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteris to extant bat lineages, with comment on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of American Museum of Natural History, 235: 1–185. Google Scholar

47.

M. F. Smith , and J. L. Patton . 1991. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Molecular Biology and Evolution, 8: 85–103. Google Scholar

48.

M. K. Springer , E. C. Teeling , O. Madsen , M. J. Standhope , and W. W. De Jong . 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Science of the USA, 98: 6241–6246. Google Scholar

49.

P. D. Sudman , L. J. Barkley , and M. S. Hafner . 1994. Familial affinity of Tomopeas ravus (Chiroptera) based on protein electrophoretic and cytochrome b sequence data. Journal of Mammalogy, 75: 365–377. Google Scholar

50.

L. A. Miller Surlykke A. , B. Mohl , B. B. Anderen , J. Christensendalsgaard , and M. B. Jorgensen . 1993. Echolocation in the very small bats from Thailand — Craseonycteris thonglongyai and Myotis siligorensis. Behavioral Ecology and Sociobiology, 33: 1–12. Google Scholar

51.

D. L. Swofford 1993. PAUP: Phylogenetic analysis using parsimony. Version 3.1.1. Laboratory of Systematics, Smithsonian Institution, Washington, D.C. Google Scholar

52.

F. Tajima 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics, 135: 599–607. Google Scholar

53.

E. C. Teeling , M. Scally , J. D. Kao , M. L. Romagnoll , M. S. Springer , and M. J. Stanhope . 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188–192. Google Scholar

54.

E. C. Teeling , O. Madsen , R. A. Van Den Bussche , W. W. De Jong , M. J. Stanhope , and M. S. Springer . 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Science of the USA, 99: 1431–1436. Google Scholar

55.

J. D. Thompson , D. G. Higgins , and T. J. Gibson . 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673–4680. Google Scholar
©Museum and Institute of Zoology PAS
Pavel Hulva and Ivan Horáček "Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a Rhinolophoid: Molecular Evidence from Cytochrome b," Acta Chiropterologica 4(2), 107-120, (1 December 2002). https://doi.org/10.3161/001.004.0201
Received: 25 May 2002; Accepted: 1 October 2002; Published: 1 December 2002
JOURNAL ARTICLE
14 PAGES


SHARE
ARTICLE IMPACT
Back to Top