Open Access
Translator Disclaimer
1 July 2005 Nest-site Characteristics of Hole-Nesting Birds in a Primeval Boreal Forest of Mongolia
Mei-Ling Bai, Frank Wichmann, Michael Mühlenberg
Author Affiliations +
Abstract

Nest sites of nine common hole-nesting bird species were studied in the West Khentey Mountains, NE Mongolia. Among three excavators, the Great Spotted Woodpecker used more aspens, larger trees, and more living or intact dead trees than the Lesser Spotted Woodpecker or the Willow Tit. Among non-excavators, the Nuthatch used mainly old holes of the Great Spotted Woodpecker, and the Red-throated Flycatcher frequently used those of the Willow Tit. Thus, the nest site characters of these two species resembled those of the original excavators, and their nests were placed higher than those of other non-excavators. The Coal Tit and the Great Tit used mostly branch holes in living trees. With respect to nest site use, the Daurian Redstart behaved as a generalist while the Common Treecreeper specialized in long slits. The nest site selection of excavators might be governed by body size, territory size and their different abilities of excavation. The non-excavators were best differentiated by their preferred hole type, and their tree use and nest site characters were mainly a consequence of the location of such holes. Interspecific competition did not appear to be important in the nest site use of hole-nesting birds in the study area.

REFERENCES

1.

R. Alatalo , A. Carlson , A. Lundberg 1988. Nest cavity size and clutch size of Pied Flycatchers Ficedula hypoleuca breeding in natural tree-holes. Ornis Scand. 19: 317–319. Google Scholar

2.

D. J. Albano 1992. Nesting mortality of Carolina Chickadees breeding in natural cavities. Condor 94: 371–382. Google Scholar

3.

P. Angelstam , G. Mikusiński 1994. Woodpecker assemblages in natural and managed boreal and hemiboreal forest — a review. Ann. Zool. Fenn. 31: 157–172. Google Scholar

4.

M. L. Bai , F. Wichmann , M. Mühlenberg 2003. The abundance of tree holes and their utilisation by hole-nesting birds in a primeval boreal forest of Mongolia. Acta Ornithol. 38: 95–102. Google Scholar

5.

J. C. Bednarz , D. Ripper , P. M. Radley 2004. Emerging concepts and research directions in the study of cavity-nesting birds: keystone ecological processes. Condor 106: 1–4. Google Scholar

6.

J. R. Belthoff , G. Ritchison 1990. Nest-site selection by eastern screech-owls in central Kentucky. Condor 92: 982–990. Google Scholar

7.

J. D. Brawn , R. P. Balda 1988. Population biology of cavity nesters in northern Arizona: do nest sites limit breeding densities? Condor 90: 61–71. Google Scholar

8.

A. Carlson , U. Sandström , O. Olsson 1998. Availability and use of natural tree holes by cavity nesting birds in a Swedish deciduous forest. Ardea 86: 109–119. Google Scholar

9.

B. J. Christman , A. A. Dhondt 1997. Nest predation in Black-capped Chickadees: how safe are cavity nests? Auk 114: 769–773. Google Scholar

10.

R. N. Conner , O. K. Miller Jr , C. S. Akisson 1976. Woodpecker dependence on trees infected by fungal heart rots. Wilson Bull. 88: 575–581. Google Scholar

11.

D. Czeszczewik 2004. Breeding success and timing of the Pied Flycatcher Ficedula hypoleuca nesting in natural holes and nest-boxes in the Białowieża Forest, Poland. Acta Ornithol. 39: 15–20. Google Scholar

12.

D. Czeszczewik , W. Walankiewicz 2003. Natural nest sites of the Pied Flycatcher Ficedula hypoleuca in a primeval forest. Ardea 91: 221–230. Google Scholar

13.

D. Czeszczewik , W. Walankiewicz , C. Mitrus , W. Nowakowski 1999. Nest-box data of Pied Flycatcher Ficedula hypoleuca may lead to erroneous generalizations. Vogelwelt 120, Suppl.: 361–365. Google Scholar

14.

G. C. Daily 1993. Heartwood decay and vertical distribution of Red-naped Sapsucker nest cavities. Wilson Bull. 105: 674–679. Google Scholar

15.

D. S. Dobkin , A. C. Rich , J. A. Pretare , Pyle , H. W. 1995. Nest-site relationships among cavity-nesting birds of riparian and snowpocket aspen woodlands in the northwestern Great Basin. Condor 97: 694–707. Google Scholar

16.

H. Dow , S. Fredga 1985. Selection of nest sites by a hole-nesting duck, the Goldeneye Bucephala clangula. Ibis 127: 16–30. Google Scholar

17.

A. J. Erskine , W. D. McLaren 1976. Comparative nesting biology of some hole-nesting birds in the Cariboo parklands, British Columbia. Wilson Bull. 88: 611–620. Google Scholar

18.

M. R. Evans , D. B. Lank , W. S. Boyd , F. Cooke 2002. A comparison of the characteristics and fate of Barrow's Goldeneye and Bufflehead nests in nest boxes and natural cavities. Condor 104: 610–619. Google Scholar

19.

U. N. Glutz von Blotzheim , K. M. Bauer 1993. Handbuch der Vögel Mitteleuropas. Aula Verlag, Wiesbaden. Google Scholar

20.

Graves , T. A. , M. A. Fajvan , G. W. Miller 2000. The effects of thinning intensity on snag and cavity tree abundance in an Appalachian hardwood stand. Can. J. For. Res. 308: 1214–1220. Google Scholar

21.

J. S. Gunn , J. M. Hagan 2000. Woodpecker abundance and tree use in uneven-aged managed, and unmanaged, forest in northern Maine. For. Ecol. Manage. 126: 1–12. Google Scholar

22.

E. Günther , M. Hellmann 1995. Die Entwicklung von Höhlen der Buntspechte (Picoides) in naturnahen Laubwäldern des nordöstlichen Harzes (Sachsen-Anhalt). Ornithol. Jahresb. Mus. Heineanum 13: 27–52. Google Scholar

23.

J. H. Hart , D. L. Hart 2001. Heartrot fungi's role in creating picid nesting sites in living aspen. In: W. D. Shepperd (ed.). Sustaining aspen in western landscapes: symposium proceedings. RMRS-P-18, Rocky Mountain Research Station, Grand Junction, Colorado, pp. 207–213. Google Scholar

24.

V. H. Hausner , N. G. Yoccoz , R. A. Ims 2003. Selecting indicator traits for monitoring land use impacts: birds in northern coastal birch forests. Ecol. Applications 13: 999–1012. Google Scholar

25.

E. Huhta , J. Jökimaki 2001. Breeding occupancy and success of two hole-nesting passerines: the impact of fragmentation caused by forestry. Ecography 24: 431–140. Google Scholar

26.

L. Imbeau , M. Mönkkönen , A. Desrochers 2001. Long-term effects of forestry on birds of the eastern Canadian boreal forests: a comparison with Fennoscandia. Conserv. Biol. 15: 1151–1162. Google Scholar

27.

L. Imbeau , J. P. L. Savard , R. Gagnon 1999. Comparing bird assemblages in successional black spruce stands originating from fire and logging. Can. J. Zool. 77: 1850–1860. Google Scholar

28.

J. A. Jackson , B. J. S. Jackson 2004. Ecological relationships between fungi and woodpecker cavity sites. Condor 106: 37–49. Google Scholar

29.

J. D. Jobson 1992. Applied multivariate data analysis. Vol. II. Categorical and multivariate methods. Springer-Verlag, New York. Google Scholar

30.

K. Johnsson , S. G. Nilsson , M. Tjernberg 1993. Characteristics and utilization of old Black Woodpecker Dryocopus martius holes by hole-nesting species. Ibis 135: 410–416. Google Scholar

31.

W. D. Koenig 2003. European Starlings and their effect on native cavity-nesting birds. Conserv. Biol. 17: 1134–1140. Google Scholar

32.

J. J. Korol , R. L. Hutto 1984. Factors affecting nest site location in Gila Woodpeckers. Condor 86: 73–78. Google Scholar

33.

A. Krištín , M. Žilinec 1997. Nest box occupancy and breeding success of hole-nesting passerines at various conditions in beech forests. Folia Zool. 46: 229–241. Google Scholar

34.

J. F. Lehmkuhl , R. L. Everett , R. Schellhaas , P. Ohlson , D. Keenum , H. Riesterer , D. Spurbeck 2003. Cavities in snags along a wildfire chronosequence in eastern Washington. J. Wildl. Manage. 67: 219–228. Google Scholar

35.

P. Li , T. E. Martin 1991. Nest-site selection and nesting success of cavity-nesting birds in high elevation forest drainages. Auk 108: 405–418. Google Scholar

36.

K. Martin , K. E. H. Aitken , K. L. Wiebe 2004. Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor 106: 5–19. Google Scholar

37.

K. Martin , J. M. Eadie 1999. Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. For. Ecol. Manage. 115: 243–257. Google Scholar

38.

T. E. Martin , P. Li 1992. Life history traits of open- vs. cavity-nesting birds. Ecology 73: 579–592. Google Scholar

39.

C. Miera 1978. Zur Brutbiologie des Zwergschnäppers. Falke 25: 120–127. Google Scholar

40.

G. Mikusiński 1995. Population trends in black woodpecker in relation to changes and characteristics of European forests. Ecography 18: 363–369. Google Scholar

41.

G. Mikusiński , P. Angelstam 1997. European woodpeckers and anthropogenic habitat change: a review. Vogelwelt 118: 277–283. Google Scholar

42.

E. O. Minot 1981. Effects of interspecific competition for food in breeding Blue and Great Tits. J. Anim. Ecol. 50: 375–385. Google Scholar

43.

C. Mitrus 2003. A comparison of the breeding ecology of Collared Flycatchers nesting in boxes and natural cavities. J. Field Ornithol. 74: 293–299. Google Scholar

44.

C. Mitrus , B. Soćko 2004. Natural nest sites of the Red-breasted Flycatcher Ficedula parva in a primeval forest. Acta Ornithol. 39: 53–57. Google Scholar

45.

A. P. Møller 1989. Parasites, predators and nest boxes: fact and artifacts in nest box studies of birds? Oikos 56: 421–424. Google Scholar

46.

J. J. Moriarty , W. C. McComb 1983. The long-term effect of timber stand improvement on snag and cavity densities in the central Appalachians. In: J. W. Davis , G. A. Goodwin , R. A. Ockenfels (eds). Snag habitat management: Proc. Symp. USDA Forest Service General Technical Report RM-99, Flagstaff, Arizona, pp. 40–14. Google Scholar

47.

I. Newton 1994. The role of nest site in limiting the numbers of hole nesting birds: a review. Biol. Conserv. 70: 265–276. Google Scholar

48.

S. G. Nilsson 1984a. Clutch size and breeding success of the Pied Flycatcher Ficedula hypoleuca in natural tree-holes. Ibis 126: 407–410. Google Scholar

49.

S. G. Nilsson 1984b. The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand. 15: 167–175. Google Scholar

50.

C. M. Perrins 1979. British tits. Collins, London. Google Scholar

51.

W. D. Peters , T. C. Grubb Jr . 1983. An experimental analysis of sex-specific foraging in the Downy Woodpecker, Picoides pubescens. Ecology 64: 1437–1443. Google Scholar

52.

B. Peterson , G. Gauthier 1985. Nest site use by cavity-nesting birds of the Cariboo Parkland, British Columbia. Wilson Bull. 97: 319–331. Google Scholar

53.

B. Pettersson 1985. Extinction of an isolated population of the Middle Spotted Woodpecker Dendrocopos medius (L.) in Sweden and its relation to general theories on extinction. Biol. Conserv. 32: 335–353. Google Scholar

54.

D. W. Pogue , G. D. Schnell 1994. Habitat characterization of secondary cavity-nesting birds in Oklahoma. Wilson Bull. 106: 203–226. Google Scholar

55.

K. L. Purcell , J. Verner , L. W. Oring 1997. A comparison of the breeding ecology of birds nesting in boxes and tree cavities. Auk 114: 646–656. Google Scholar

56.

W. B. Rendell , R. J. Robertson 1989. Nest-site characteristics, reproductive success and cavity availability for tree swallows breeding in natural cavities. Condor 91: 875–885. Google Scholar

57.

H. V. Rogacheva , E. E. Syroechkovski , O. V. Bourski , A. A. Moroz , B. I. Sheftel 1991. [Birds of the Central-Siberian Biosphere Reserve. Vol. II. Passerine birds]. In: Institute of Animal Morphology and Ecology (ed.). [Biological resources and biocenoses of the Yenisey taiga]. USSR Academy of Science, Moscow, pp. 32–152. Google Scholar

58.

J. Rolstad , B. Loken , E. Rolstad 2000. Habitat selection as a hierarchical spatial process: the Green Woodpecker at the northern edge of its distribution range. Oecologia 124: 116–129. Google Scholar

59.

L. M. Sachslehner 1995. Reviermerkmale und Brutplatzwahl in einer Naturhöhlen-Population des Halsbandschnäppers Ficedula albicollis im Wienerwald, Österreich. Vogelwelt 116: 245–254. Google Scholar

60.

U. Sandström 1991. Enhanced predation rates on cavity bird nests at deciduous forest edges — an experimental study. Ornis Fennica 68: 93–98. Google Scholar

61.

U. Sandström 1992. Cavities in trees: their occurrence, formation and importance for hole-nesting birds in relation to silvicultural practice. Swedish University of Agricultural Science, Department of Wildlife Ecology, Report 24, Uppsala. Google Scholar

62.

J. A. Sedgwick 1997. Sequential cavity use in a cottonwood bottomland. Condor 99: 880–887. Google Scholar

63.

K. W. Smith 1997. Nest site selection of the great spotted woodpecker Dendrocopos major in two oak woods in southern England and its implications for woodland management. Biol. Conserv. 80: 283–288. Google Scholar

64.

D. F. Stauffer , L. B. Best 1982. Nest-site selection by cavity-nesting birds of riparian habitats in Iowa. Wilson Bull. 94: 329–337. Google Scholar

65.

I. Stenberg 1996. Nest site selection in six woodpecker species. Fauna Norvegica Ser. C Cinclus 19: 21–38. Google Scholar

66.

J. H. van Balen , C. J. H. Booy , J. A. van Franeker , E. R. Osieck 1982. Studies on hole-nesting birds in natural nest sites. 1. Availability and occupation of natural nest sites. Ardea 70: 1–24. Google Scholar

67.

W. Walankiewicz 1991. Do secondary cavity-nesting birds suffer more from competition for cavities or from predation in a primeval deciduous forest? Nat. Areas J. 11: 203–212. Google Scholar

68.

W. Walankiewicz 2002. Breeding losses in the Collared Flycatcher Ficedula albicollis caused by nest predators in the Białowieża National Park (Poland). Acta Ornithol. 37: 21–26. Google Scholar

69.

T. Wesołowski 1989. Nest-sites of hole-nesters in a primaeval temperate forest (Białowieża National Park, Poland). Acta Ornithol. 25: 321–351. Google Scholar

70.

T. Wesołowski 1995. Value of Białowieża forest for the conservation of White-backed Woodpecker Dendrocopos leucotos in Poland. Biol. Conserv. 71: 69–75. Google Scholar

71.

T. Wesołowski 1996. Natural nest sites of marsh tit (Parus palustris) in a primaeval forest (Białowieża National Park, Poland). Vogelwarte 38: 235–249. Google Scholar

72.

T. Wesołowski 2002. Anti-predator adaptations in nesting Marsh Tits Parus palustris: the role of nest-site security. Ibis 144: 593–601. Google Scholar

73.

T. Wesołowski , M. Stańska 2001. High ectoparasite loads in hole-nesting birds: a nestbox bias? J. Avian Biol. 32: 281–285. Google Scholar

74.

T. Wesołowski , L. Tomiałojć 1986. The breeding ecology of woodpeckers in a temperate primaeval forest — preliminary data. Acta Ornithol. 22: 1–21. Google Scholar

75.

K. L. Wiebe 2001. Microclimate of tree cavity nests: Is it important for reproductive success in Northern Flickers? Auk 118: 412–421. Google Scholar

76.

G. R. Willner , J. E. Gates , W. J. Devlin 1983. Nest box use by cavity-nesting birds. Am. Mid. Nat. 109: 194–201. Google Scholar

77.

J. Wübbenhorst , P. Südbeck 2003. Woodpeckers as indicators for sustainable forestry? First results of a study from Lower Saxony. Nationalpark Berchtesgaden Forschungsbericht 48: 179–192. Google Scholar
Mei-Ling Bai, Frank Wichmann, and Michael Mühlenberg "Nest-site Characteristics of Hole-Nesting Birds in a Primeval Boreal Forest of Mongolia," Acta Ornithologica 40(1), 1-14, (1 July 2005). https://doi.org/10.3161/068.040.0105
Received: 1 June 2004; Accepted: 1 January 2005; Published: 1 July 2005
JOURNAL ARTICLE
14 PAGES


Share
SHARE
KEYWORDS
boreal primeval forest
cavity nesters
hole-nesting birds
nest-site selection
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top