Open Access
How to translate text using browser tools
1 July 2005 Genetic Variability of Polish Population of the Capercaillie Tetrao urogallus
Robert Rutkowski, Hubert Niewęgłowski, Roman Dziedzic, Marek Kmieć, Jan Goździewski
Author Affiliations +
Abstract

The Capercaillie is one of the most seriously endangered bird species in Poland. It currently numbers around 650 individuals that live in four isolated populations (Lower Silesian Forest, Janów Lubelski Forest, Carpathians, Augustów Forest). This study investigated genetic variability based on the polymorphism of six microsatellite loci in the surviving Polish populations of the Capercaillie and compares the results with the analogous variability in two large, contiguous populations in Russia. The following parameters were estimated: mean number of alleles per locus, allelic richness, mean effective number of alleles per locus, heterozygosity in each of the populations investigated. Differentiation between pairs of populations was assessed using FST. The results show that despite some inevitable reduction in genetic variability, most of the Polish populations retained a substantial level of microsatellite polymorphism. Only in the population from Janów Lubelski Forest was there a significant reduction in variability, probably due to long isolation and the recent decline. That this population has long been isolated was also confirmed by the pronounced genetic differentiation from the other Polish populations. The Carpathian population of the Capercaillie was found to be genetically structured, and in the Lower Silesian Forest population heterozygosity was low, possibly as a result of the lek mating system and also the dramatic reduction in numbers.

REFERENCES

1.

D. Baines , R. Moss , D. Dugan 2004. Capercaillie breeding success in relation to forest habitat and predator abundance. J. Appl. Ecol. 41: 59–71. Google Scholar

2.

J. L. Bouzat , K. Johnson 2004. Genetic structure among closely spaced leks in a peripheral population of lesser prairiechickens. Mol. Ecol. 13: 499–505. Google Scholar

3.

S. Cramp, K. E. L. Simmons (eds). 1980. The birds of Western Palearctic. Vol. II. Oxford Univ. Press. Google Scholar

4.

A. Edwards , A. Civitello , H. A. Hammond , C. T. Caskey 1991. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Human Gen. 49: 746–756. Google Scholar

5.

R. Frankham 1995. Inbreeding and extinction: a threshold effects. Conserv. Biol. 9: 792–799. Google Scholar

6.

R. Frankham, J. D. Ballou, D. A. Briscoe 2002. Introduction to Conservation Genetics. Cambridge Univ. Press. Google Scholar

7.

D. J. Girman , C. Vila , E. Geffen , S. Creel , M. G. L. Mills , J. W. McNutt , J. Ginsberg , P. W. Kat , K. H. Mamiya , R. K. Wayne 2001. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol. Ecol. 10: 1703–1723. Google Scholar

8.

Z. Głowaciński , P. Profus 2001. [Capercaillie]. In: [Polish Red Book Data. Vertebrates]. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa, pp. 173–177. Google Scholar

9.

J. Goudet 2001. FSTAT V2.9.3, a program to estimate and test gene diversities and fixation indices, (available:  http://www.unil.ch/izea/softwares/fstat.htlm ). Google Scholar

10.

D. L. Hartl , A. G. Clark 1997. Principles of Population Genetics. 3rd ed. Sinauer Associates, Inc, Sunderland, MA. Google Scholar

11.

P. W. Hedrick 2001. Conservation genetics: where are we now? TREE 16: 629–636. Google Scholar

12.

L. F. Keller , D. M. Waller 2002. Inbreeding effects in wild populations. TREE 17: 230–241. Google Scholar

13.

P. L. M. Lee , R. B. Bradbury , J. D. Wilson , N. S. Flanagan , L. Richardson , A. J. Perkins , J. R. Krebs 2001. Microsatellite variation in the yellowhammer Emberiza citrinella: population structure of declining farmland bird. Mol. Ecol. 10: 1633–1644. Google Scholar

14.

C. Lever 1977. The Naturalised Animals of British Isles. Hutchinson, London. Google Scholar

15.

M. Nei , A. K. Roychoudhury 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76: 379–390. Google Scholar

16.

R. Paekal, P. E. Smouse 2001. GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching and research, (available:  http://www.anu.ed.au/BoZo/GenAlEx/ ). Google Scholar

17.

R. J. Petit , A. El Mousadik , O. Pons 1998. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12: 844–855. Google Scholar

18.

A. D. Roeder , R. K. Marshall , A. J. Mitchelson , T. Visagathilagar , P. A. Ritchie , D. R. Love , T. J. Pakai , H. C. McPartlan , N. D. Murray , N. A. Robinson , K. R. Kerry , D. M. Lambert 2001. Gene flow on the ice: genetic differentiation among Adélie penguin colonies around Antarctica. Mol. Ecol. 10: 1645–1656. Google Scholar

19.

G. Segelbacher , G. Steinbrück 2001. Bird faeces for sex identification and microsatellite analysis. Vogelwarte 41: 139–142. Google Scholar

20.

G. Segelbacher , I. Storch 2002. Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol. Ecol. 11:1669–1677. Google Scholar

21.

G. Segelbacher , J. Höglund , I. Storch 2003. From connectivity to isolation: genetic consequences of population fragmentation in across Europe. Mol. Ecol. 12: 1773–1780. Google Scholar

22.

G. Segelbacher , R. J. Paxton , G. Steinbruck , P. Trontelj , I. Storch 2000. Characterization of microsatellites in capercaillie Tetrao urogallus (AVES). Mol. Ecol. 9: 1934–1935. Google Scholar

23.

R. R. Sokal , F. J. Rolph 2003. Biometry. Freeman, New York. Google Scholar

24.

M. E. Soulé 1987. Viable Populations for Conservation. Cambridge Univ. Press, New York. Google Scholar

25.

M. E. Soulé , S. L. Mills 1998. No need to isolate genetics. Science 282: 1658–1659. Google Scholar

26.

R. L. Stallings , A. F. Ford , D. Nelson , D. C. Torney , C. E. Hilderbrand , R. K. Moyzis 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10: 807–815. Google Scholar

27.

I. Storch 2000. Grouse Status Survey and Conservation Action Plan 2000-4. WPA/Bird Life/SSC Grouse Specialist Group, IUCN, Gland, Switzerland/World Pheasant Association, Reading, UK. Google Scholar

28.

I. Storch 2001. Tetrao urogallus. Capercaillie. BWP Update. The Journal of Birds of the Western Palearctic. Oxford Univ. Press. Google Scholar

29.

L. Tomiałojć 2000. An East-West gradient in the breeding distribution and species richness of the European woodland avifauna. Acta Ornithol 35: 3–17. Google Scholar

30.

L. Tomiałojć, T. Stawarczyk 2003. [The avifauna of Poland. Distribution, numbers and trends]. PTPP “pro Natura”, Wrocław. Google Scholar

31.

R. L. Westemeier , J. D. Brawn , S. A. Simpson , T. L. Esker , R. W. Jansen , J. W. Walk , E.L. Kershner , J. L. Bouzat , K. N. Paige 1998. Tracking the long-term decline and recovery of an isolated population. Science 282: 1695–1698. Google Scholar
Robert Rutkowski, Hubert Niewęgłowski, Roman Dziedzic, Marek Kmieć, and Jan Goździewski "Genetic Variability of Polish Population of the Capercaillie Tetrao urogallus," Acta Ornithologica 40(1), 27-34, (1 July 2005). https://doi.org/10.3161/068.040.0108
Received: 1 September 2004; Accepted: 1 March 2005; Published: 1 July 2005
KEYWORDS
Capercaillie
genetic variability
microsatellites
population structure
Tetrao urogallus
Back to Top