BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Open Access
How to translate text using browser tools
1 July 2006 Factors Influencing Occurrence of Passerines in the Reed Archipelago of Lake Velence (Hungary)
András Báldi
Author Affiliations +
Abstract

Bird census data from the reed archipelago (109 islands) of Lake Velence, Hungary, were used to assess the relative importance of habitat scale variables (island area and shape, reed stand density and reed height) and landscape scale variables (distance to the nearest reed island and nearest large reed island, percentage of reed-, water- and land-cover around the islands). Habitat and landscape scale variables played a similar general role in explaining the presence of the eight observed reedbed passerines. Reed island area was the most important factor; however, owing to the small average island area (1.74 ha), this simply indicates that too small reed patches were not occupied. A preference for an elongated shape (reedbed edges) was important for half of the species, and no other variables were included into the model of more than two species. The important practical conclusion is that both habitat and landscape scale factors should be considered in nature conservation management of reedbeds.

REFERENCES

1.

A. Báldi 1999. Microclimate and vegetation edge effects in a reedbed in Hungary. Biodivers. Conserv. 8: 1697–1706. Google Scholar

2.

A. Báldi 2004. Area requirements of passerine birds in the reed archipelago of Lake Velence, Hungary. Acta Zool. Hung. 50:1–8. Google Scholar

3.

A. Báldi , T. Kisbenedek 1999. Species-specific distribution of reed-nesting passerine birds across reed-bed edges: effects of spatial scale and edge type. Acta Zool. Hung. 45: 97–114. Google Scholar

4.

A. Báldi , T. Kisbenedek 2000. Bird species numbers in an archipelago of reeds at Lake Velence, Hungary. Global Ecol. Biogeogr. 9: 451–462. Google Scholar

5.

P. Batáry , A. Báldi 2004. Evidence of an edge effect on avian nest success. Conserv. Biol. 18: 389–400. Google Scholar

6.

P. Batáry , A. Báldi 2005. Factors affecting the survival of real and artificial Great Reed Warbler's nests. Biologia 60: 215–219. Google Scholar

7.

K. Böhning-Gaese , R. Oberrath 2003. Macroecology of habitat choice in long-distance migratory birds. Oecologia 137: 296–303. Google Scholar

8.

L. Bosschieter , P.W. Goedhart 2005. Gap crossing decisions by reed warblers (Acrocephalus scirpaceus) in agricultural landscapes. Landscape Ecol. 20: 455–468. Google Scholar

9.

C. Celada , G. Bogliani 1993. Breeding bird communities in fragmented wetlands. Boll. Zool. 60: 73–80. Google Scholar

10.

D. F. R. Cleary , M. J. Genner , T. J. B. Boyle , T. Setyawati , C. D. Angraeti , S. B. J. Menken 2005. Associations of bird species richness and community composition with local and landscape-scale environmental factors in Borneo. Landscape Ecol. 20: 989–1001. Google Scholar

11.

S. Cramp 1998. The Complete Birds of the Western Palearctic on CD-ROM. Oxford Univ. Press. Google Scholar

12.

T. Csörgő 1995. [Birds] (Aves). In: T. Vásárhelyi (ed). [Animal world of reed belt.] Hungarian Natural History Museum, Budapest, pp. 98–105. Google Scholar

13.

P. Drapeau , A. Leduc , J. F. Giroux , J. P. L. Savard , Y. Bergeron , W. L. Vickery 2000. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70: 423–444. Google Scholar

14.

L. Fahrig 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34: 487–515. Google Scholar

15.

S. E. Fairbairn , J. J. Dinsmore 2001. Local and landscape-level influences on wetland bird communities of the prairie pothole region of Iowa, USA. Wetlands 21: 41–47. Google Scholar

16.

R. P. B. Foppen , J. P. Chardon , W. Liefveld 2000. Understanding the role of sink patches in source-sink metapopulations: Reed Warbler in an agricultural landscape. Conserv. Biol. 14: 1881–1892. Google Scholar

17.

J. Graveland 1998. Reed die-back, water level management and the decline of the Great Reed Warbler Acrocephalus arundinaceus in The Netherlands. Ardea 86: 187–201. Google Scholar

18.

S. A. Hinsley , P. E. Bellamy , I. Newton , T. H. Sparks 1995 Habitat and landscape factors influencing the presence of individual breeding bird species in woodland fragments. J. Avian Biol. 26: 94–104. Google Scholar

19.

H. Hoi (ed). 2001. The ecology of reed birds. Austrian Academy of Sciences, Wien. Google Scholar

20.

H. Hoi , H. Winkler 1994. Predation on nests — a case of apparent competition. Oecologia 98: 436–440. Google Scholar

21.

D. W. Hosmer , S. L. Lemeshow 2000. Applied logistic regression. Wiley & Sons, New York. Google Scholar

22.

B. Leisler 1975. The significance of foot morphology in the habitat separation of Central European Acrocephalus and Locustella species. J. Ornithol. 116: 117–153. Google Scholar

23.

B. Leisler , H. W. Ley , H. Winkler 1989. Habitat, behavior and morphology of Acrocephalus warblers — an integrated analysis. Ornis Scand. 20: 181–186. Google Scholar

24.

M. J. Mazerolle , M. A. Villard 1999. Patch characteristics and landscape context as predictors of species presence and abundance: A review. Ecoscience 6: 117–124. Google Scholar

25.

S. Melles , S. Glenn , K. Martin 2003. Urban bird diversity and landscape complexity: Species-environment associations along a multiscale habitat gradient. Conserv. Ecol. 7: Art. No. 5. Google Scholar

26.

C. Moskát , A. Báldi 1999. The importance of edge effect in line transect censuses applied in marshland habitat. Ornis Fennica 76: 33–40. Google Scholar

27.

C. Moskát , M. Honza 2000. Effect of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 23:335–341. Google Scholar

28.

B. Poulin 2001. Introduction: Reedbed management and conservation in Europe. In: R. Fields , R. J. Warren , H. Okarma , P. R. Sievert (eds). Wildlife land and people: Priorities for the 21th century. The Wildlife Society, Bethesda, Maryland, USA, pp. 378–381. Google Scholar

29.

B. Poulin , G. Lefebvre , A. Mauchamp 2002. Habitat requirements of passerines and reedbed management in southern France. Biol. Conserv. 107: 315–325. Google Scholar

30.

A. Surmacki 2004. Habitat use by Reed Bunting Emberiza schoeniclus in an intensively used farmland in Western Poland. Ornis Fennica 81: 137–143. Google Scholar

31.

A. Surmacki 2005. Habitat use by three Acrocephalus warblers in an intensively used farmland area: the influence of breeding patch and its surroundings. J. Ornithol. 146: 160–166. Google Scholar

32.

SPSS 1999. SPSS Base 10.0. SPSS Inc., Chicago, USA. Google Scholar

33.

D. Whited , S. Galatowitsch , J. R. Tester , K. Schik , R. Lehtinen , J. Husveth 2000. The importance of local and regional factors in predicting effective conservation planning strategies for wetland bird communities in agricultural and urban landscapes. Landscape & Urban Plann. 49: 49–65. Google Scholar

34.

M. Winter , D. H. Johnson , J. A. Shaffer , T. M. Donovan , W. D. Svedarsky 2006. Patch size and landscape effects on density and nesting success of grassland birds. J. Wildl. Manage. 70: 158–172. Google Scholar
András Báldi "Factors Influencing Occurrence of Passerines in the Reed Archipelago of Lake Velence (Hungary)," Acta Ornithologica 41(1), 1-6, (1 July 2006). https://doi.org/10.3161/068.041.0105
Received: 1 March 2006; Accepted: 1 June 2006; Published: 1 July 2006
KEYWORDS
Acrocephalus sp
habitat scale
Hungary
Lake Velence
landscape scale
logistic regression
passerines
Back to Top