We have investigated whether differences in nestling diet found between locally sympatric Redstarts and Black Redstarts are caused by species-specific preferences or by a different food supply in their territories. The diet of nestlings in a mosaic-like urban environment was studied using the neck-collar method. We found no significant difference in the length of Redstart and Black Redstart prey items. However, the two species did bring to their nestlings invertebrates of different taxa. We used the variance partitioning method based on multivariate Redundancy Analysis to test the influence of habitat, timing of breeding, and the species of redstart itself on nestling-diet composition. Most of the variance in the nestling diet (all the canonical axes explained 70.6% of the variance) could be attributed to habitat variables (34%) and the timing of breeding (8.9%), but only 8.1% to the species of redstart. We suggest that the diet of the two redstart species is influenced largely by current prey availability and, consequently, that interspecific competition is avoided primarily by territory exclusion rather than by food-niche separation. We consider the variance partitioning method to be a powerful tool for identifying the effects of various explanatory variables that could influence food composition in birds.
How to translate text using browser tools
1 July 2007
Differences in the Nestling Diets of Sympatric Redstarts Phoenicurus phoenicurus and Black Redstarts P. ochruros: Species-Specific Preferences or Responses to Food Supply?
Ondřej Sedláček,
Roman Fuchs,
Alice Exnerová
K. Bösenberg
1960. Zur Nestlingnahrung einiger Höhlenbrüter im Kiefernwald im Hinblick auf die Frage der selektiven Nahrungswahl. Probl. Angew. Orn. 30: 53–62. Google Scholar
S. Bureš
1994. Segregation of the diet in Water Pipit (Athus spinolleta) and Meadow Pipit (Anthus pratensis) nestlings in an area damaged by air pollution. Folia Zool. 43: 43–48. Google Scholar
S. Bureš
1995. Comparison of the diet in Collared Flycatcher (F. albicollis) and Pied Flycatcher (F. hypoleuca) nestlings in a hybrid zone. Folia Zool. 44: 247–253. Google Scholar
A. M. Burton
,
P. Olsen
1997. Niche partitioning by two sympatric goshawks in the Australian wet tropics: Breeding-season diet. Wildlife Res. 24: 45–52. Google Scholar
A. M. Cardenas
,
J. A. Torres
,
C. Bach
1984. Estudio comparado del regimen alimentatio de Acrocephalus arundinaceus y A. scirpaceus an la Laguna de Zonar. Ardeola 30: 33–44. Google Scholar
R. J. Cooper
,
R. C. Whitmore
1990. Arthropod sampling methods in ornithology. Stud. Avian Biol. 13: 29–37. Google Scholar
R. J. Cooper
,
P. J. Martinat
,
R. C. Whitmore
1990. Dietary similarity among insectivorous birds: influence of taxonomic versus ecological categorization of prey. Stud. Avian Biol. 13: 104–109. Google Scholar
S. Cramp
(ed.).
1988. The Birds of the Western Palearctic. Vol. V. Oxford Univ. Press. Google Scholar
M. Dornbusch
1981. Die Ernahrung einiger Kleinvogelarten in Kiefernjungbestockungen. Beitr. Vogelkd. 27: 73–99. Google Scholar
A. Dyrcz
,
H. Flinks
2003. Nestling food of the congeneric and sympatric Rusty-margined and Social flycatchers. J. Field Ornithol. 74: 157–165. Google Scholar
R. Emmrich
1975. Zum Nahrungsspektrum und zur Ernährungsbiologie des Garten-rotschwanzes (Phoenicurus phoenicurus). Beitr. Vogelkd. 21: 102–110. Google Scholar
K. T. Ertan
2002. Evolutionary biology of the genus Phoenicurus. Phylogeography, natural hybridisation and population dynamics. Tectum Verlag, Marburg. Google Scholar
R. G. Ford
,
J. P. Myers
1981. An evaluation and comparison of techniques for estimating home range and territory size. Stud. Avian Biol. 6: 461–465. Google Scholar
A. T. Gerstell
,
J. C. Bednarz
1999. Competition and patterns of resource use by two sympatric raptors. Condor 101: 557–565. Google Scholar
J. T. Garcia
,
B. E. Arroyo
2005. Food-niche differentiation in sympatric Hen Circus cyaneus and Montagu's Harriers Circus pygargus. Ibis 147: 144–154. Google Scholar
von Blotzheim U. N. Glutz
,
K. M. Bauer
1988. Handbuch der Vogel Mitteleuropas. Vol. XI/1. Aula Verlag, Wiesbaden. Google Scholar
P. R. Grant
1986. Ecology and evolution of Darwin's finches. Princeton Univ. Press, Princeton, N.Y. Google Scholar
T. E. Hamer
,
D. L. Hays
,
C. M. Senger
,
E. D. Forsman
2001. Diets of Northern Barred Owls and Northern Spotted Owls in an area of sympatry. J. Raptor Res. 35: 221–227. Google Scholar
R. L. Hutto
1990. Measuring the availability of food resources. Stud. Avian Biol. 13: 20–28. Google Scholar
F. M. Jaksic
,
H. M. Braker
1983. Food-niche relationships and guilds structure of diurnal birds of prey: competition versus opportunism. Can. J. Zool. 61: 2230–2241. Google Scholar
Gál J. Korodi
,
A. Györfi
1958. [Contribution to feeding ecology of the Redstart (Phoenicurus phoenicurus L.)]. Studii Cercet. Biol. 9: 59–68. Google Scholar
A. Krištín
,
A. Exnerová
1994. [On the diet and breeding biology of Tree Pipit (Anthus trivialis) and Black Redstart (Phoenicurus ochruros)]. Sylvia 30: 64–71. Google Scholar
A. Landmann
,
N. Winding
1995. Adaptive radiation and resource partitioning in Himalayan high-altitude finches. Zoology 99: 8–20. Google Scholar
J. Lepš
,
P. Šmilauer
2003. Multivariate analysis of ecological data using CANOCO. Cambridge Univ. Press. Google Scholar
P. Mackrodt
1973. Zur Ernährung von Hausrotschwanz-Nestlingen. Gef Welt 97: 150–152. Google Scholar
K. Mansfeld
1961. Zur forstbiologischen Bedeutung und zur erreichbaren Siedlungsdichte insektenfressender Vögel in Kiefernbestanden. Falke 8: 61–63. Google Scholar
T. E. Martin
1987. Food as a limit on breeding birds: a life-history perspective. Ann. Rev. Ecol. Syst. 18: 453–487. Google Scholar
E. Mey
1974. Zur Nestlingsnahrung des Hausrotschwanzes (Phoenicurus ochruros). Abh. Ber. Naturkundl. Mus. Mauritianum 8: 319–324. Google Scholar
D. Munteanu
1969. Some data concerning the distribution and ecology of the Black Redstart in the basin of the river Moldavian Bistritza. Cerc. Ecol. Anim. Bucuresti: 65–74. Google Scholar
B. Nicolai
1992. Untersuchungen zur Nahrung und zum Nahrungserwerb des Hausrotschwanzes (Phoenicurus ochruros). Ornithol. Jber. Mus. Heineanum 10: 75–105. Google Scholar
I. N. Nilsson
1984. Prey weight, food overlap, and reproductive output of potentially competing Long-eared and Tawny Owls. Ornis Scand. 15: 176–182. Google Scholar
S. Pfeifer
,
W. Keil
1958. Versuche zur Steigerung der Siedlungsdichte höhlen- und freibrütender Vogelarten und ernährungsbiologische Untersuchungen an nestlingen einiger Singvogelarten in einem Schadgebiet des Eichenwicklers (Tortrix viridana L.) im Osten von Frankfurt am Main. Biol. Abh. 15/16: 1–52. Google Scholar
M. Pruska
1980. The diet of the nestlings of the Parus major, Ficedula hypoleuca and P. phoenicurus in a pine wood. Acta Ornithol. 17: 321–332. Google Scholar
H. F. Recher
1990. Specialist or generalist: Avian response to spatial and temporal changes in resources. Stud. Avian Biol. 13: 333–336. Google Scholar
A. Rolando
,
P. Laiolo
1997. A comparative analysis of the diets of the Chough Pyrrhocorax pyrrhocorax and the Alpine Chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139: 388–395. Google Scholar
K. V. Rosenberg
,
R. J. Cooper
1990. Approaches to avian diet analysis. Stud. Avian Biol. 13: 80–90. Google Scholar
T. W. Schoener
1965. The evolution of bill size differences among sympatric congeneric species of birds. Evolution 19: 189–213. Google Scholar
O. Sedláček
,
R. Fuchs
,
A. Exnerová
2004. Redstart (Phoenicurus phoenicurus) and Black Redstart (P. ochruros) in a mosaic urban environment: neighbours or rivals? J. Avian Biol. 35: 336–343. Google Scholar
O. Sedláček
,
B. Cikánová
,
R. Fuchs
2006. Heterospecific rival recognition in Black Redstart (Phoenicurus ochruros). Ornis Fennica 83: 153–161. Google Scholar
C. J. F. ter Braak
,
P. Šmilauer
2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, N.Y. Google Scholar
M. Tokeshi
1999. Species coexistence. Ecological and evolutionary perspectives. Blackwell Science. Google Scholar
J. A. Wiens
1989. The Ecology of Bird Communities. Conceptual Issues and the Evidence. Princeton Univ. Press, Cambridge. Google Scholar
H. Wolda
1990. Food availability for an insectivore and how to measure it. Stud. Avian Biol. 13: 38–43. Google Scholar
Acta Ornithologica
Vol. 42 • No. 1
July 2007
Vol. 42 • No. 1
July 2007
diet selection
interspecific competition
local sympatry
redundancy analysis
seasonal variation
urban environment
variance partitioning