Open Access
How to translate text using browser tools
1 July 2007 Differences in the Nestling Diets of Sympatric Redstarts Phoenicurus phoenicurus and Black Redstarts P. ochruros: Species-Specific Preferences or Responses to Food Supply?
Ondřej Sedláček, Roman Fuchs, Alice Exnerová
Author Affiliations +
Abstract

We have investigated whether differences in nestling diet found between locally sympatric Redstarts and Black Redstarts are caused by species-specific preferences or by a different food supply in their territories. The diet of nestlings in a mosaic-like urban environment was studied using the neck-collar method. We found no significant difference in the length of Redstart and Black Redstart prey items. However, the two species did bring to their nestlings invertebrates of different taxa. We used the variance partitioning method based on multivariate Redundancy Analysis to test the influence of habitat, timing of breeding, and the species of redstart itself on nestling-diet composition. Most of the variance in the nestling diet (all the canonical axes explained 70.6% of the variance) could be attributed to habitat variables (34%) and the timing of breeding (8.9%), but only 8.1% to the species of redstart. We suggest that the diet of the two redstart species is influenced largely by current prey availability and, consequently, that interspecific competition is avoided primarily by territory exclusion rather than by food-niche separation. We consider the variance partitioning method to be a powerful tool for identifying the effects of various explanatory variables that could influence food composition in birds.

REFERENCES

1.

K. Bösenberg 1960. Zur Nestlingnahrung einiger Höhlenbrüter im Kiefernwald im Hinblick auf die Frage der selektiven Nahrungswahl. Probl. Angew. Orn. 30: 53–62. Google Scholar

2.

S. Bureš 1994. Segregation of the diet in Water Pipit (Athus spinolleta) and Meadow Pipit (Anthus pratensis) nestlings in an area damaged by air pollution. Folia Zool. 43: 43–48. Google Scholar

3.

S. Bureš 1995. Comparison of the diet in Collared Flycatcher (F. albicollis) and Pied Flycatcher (F. hypoleuca) nestlings in a hybrid zone. Folia Zool. 44: 247–253. Google Scholar

4.

A. M. Burton , P. Olsen 1997. Niche partitioning by two sympatric goshawks in the Australian wet tropics: Breeding-season diet. Wildlife Res. 24: 45–52. Google Scholar

5.

A. M. Cardenas , J. A. Torres , C. Bach 1984. Estudio comparado del regimen alimentatio de Acrocephalus arundinaceus y A. scirpaceus an la Laguna de Zonar. Ardeola 30: 33–44. Google Scholar

6.

R. J. Cooper , R. C. Whitmore 1990. Arthropod sampling methods in ornithology. Stud. Avian Biol. 13: 29–37. Google Scholar

7.

R. J. Cooper , P. J. Martinat , R. C. Whitmore 1990. Dietary similarity among insectivorous birds: influence of taxonomic versus ecological categorization of prey. Stud. Avian Biol. 13: 104–109. Google Scholar

8.

S. Cramp (ed.). 1988. The Birds of the Western Palearctic. Vol. V. Oxford Univ. Press. Google Scholar

9.

M. Dornbusch 1981. Die Ernahrung einiger Kleinvogelarten in Kiefernjungbestockungen. Beitr. Vogelkd. 27: 73–99. Google Scholar

10.

A. Dyrcz , H. Flinks 2003. Nestling food of the congeneric and sympatric Rusty-margined and Social flycatchers. J. Field Ornithol. 74: 157–165. Google Scholar

11.

R. Emmrich 1975. Zum Nahrungsspektrum und zur Ernährungsbiologie des Garten-rotschwanzes (Phoenicurus phoenicurus). Beitr. Vogelkd. 21: 102–110. Google Scholar

12.

K. T. Ertan 2002. Evolutionary biology of the genus Phoenicurus. Phylogeography, natural hybridisation and population dynamics. Tectum Verlag, Marburg. Google Scholar

13.

R. G. Ford , J. P. Myers 1981. An evaluation and comparison of techniques for estimating home range and territory size. Stud. Avian Biol. 6: 461–465. Google Scholar

14.

A. T. Gerstell , J. C. Bednarz 1999. Competition and patterns of resource use by two sympatric raptors. Condor 101: 557–565. Google Scholar

15.

J. T. Garcia , B. E. Arroyo 2005. Food-niche differentiation in sympatric Hen Circus cyaneus and Montagu's Harriers Circus pygargus. Ibis 147: 144–154. Google Scholar

16.

von Blotzheim U. N. Glutz , K. M. Bauer 1988. Handbuch der Vogel Mitteleuropas. Vol. XI/1. Aula Verlag, Wiesbaden. Google Scholar

17.

P. R. Grant 1986. Ecology and evolution of Darwin's finches. Princeton Univ. Press, Princeton, N.Y. Google Scholar

18.

T. E. Hamer , D. L. Hays , C. M. Senger , E. D. Forsman 2001. Diets of Northern Barred Owls and Northern Spotted Owls in an area of sympatry. J. Raptor Res. 35: 221–227. Google Scholar

19.

K. Hudec (ed.). 1983. [Fauna ČSSR. Ptáci — Aves]. Vol. III/2. Academia, Praha. Google Scholar

20.

R. L. Hutto 1990. Measuring the availability of food resources. Stud. Avian Biol. 13: 20–28. Google Scholar

21.

F. M. Jaksic , H. M. Braker 1983. Food-niche relationships and guilds structure of diurnal birds of prey: competition versus opportunism. Can. J. Zool. 61: 2230–2241. Google Scholar

22.

J. G. Kelcey , G. Rheinwald 2005. Birds in European Cities. Ginster Verlag. Google Scholar

23.

Gál J. Korodi , A. Györfi 1958. [Contribution to feeding ecology of the Redstart (Phoenicurus phoenicurus L.)]. Studii Cercet. Biol. 9: 59–68. Google Scholar

24.

A. Krištín , A. Exnerová 1994. [On the diet and breeding biology of Tree Pipit (Anthus trivialis) and Black Redstart (Phoenicurus ochruros)]. Sylvia 30: 64–71. Google Scholar

25.

A. Landmann , N. Winding 1995. Adaptive radiation and resource partitioning in Himalayan high-altitude finches. Zoology 99: 8–20. Google Scholar

26.

J. Lepš , P. Šmilauer 2003. Multivariate analysis of ecological data using CANOCO. Cambridge Univ. Press. Google Scholar

27.

P. Mackrodt 1973. Zur Ernährung von Hausrotschwanz-Nestlingen. Gef Welt 97: 150–152. Google Scholar

28.

K. Mansfeld 1961. Zur forstbiologischen Bedeutung und zur erreichbaren Siedlungsdichte insektenfressender Vögel in Kiefernbestanden. Falke 8: 61–63. Google Scholar

29.

T. E. Martin 1987. Food as a limit on breeding birds: a life-history perspective. Ann. Rev. Ecol. Syst. 18: 453–487. Google Scholar

30.

E. Mey 1974. Zur Nestlingsnahrung des Hausrotschwanzes (Phoenicurus ochruros). Abh. Ber. Naturkundl. Mus. Mauritianum 8: 319–324. Google Scholar

31.

D. Munteanu 1969. Some data concerning the distribution and ecology of the Black Redstart in the basin of the river Moldavian Bistritza. Cerc. Ecol. Anim. Bucuresti: 65–74. Google Scholar

32.

B. Nicolai 1992. Untersuchungen zur Nahrung und zum Nahrungserwerb des Hausrotschwanzes (Phoenicurus ochruros). Ornithol. Jber. Mus. Heineanum 10: 75–105. Google Scholar

33.

I. N. Nilsson 1984. Prey weight, food overlap, and reproductive output of potentially competing Long-eared and Tawny Owls. Ornis Scand. 15: 176–182. Google Scholar

34.

S. Pfeifer , W. Keil 1958. Versuche zur Steigerung der Siedlungsdichte höhlen- und freibrütender Vogelarten und ernährungsbiologische Untersuchungen an nestlingen einiger Singvogelarten in einem Schadgebiet des Eichenwicklers (Tortrix viridana L.) im Osten von Frankfurt am Main. Biol. Abh. 15/16: 1–52. Google Scholar

35.

M. Pruska 1980. The diet of the nestlings of the Parus major, Ficedula hypoleuca and P. phoenicurus in a pine wood. Acta Ornithol. 17: 321–332. Google Scholar

36.

H. F. Recher 1990. Specialist or generalist: Avian response to spatial and temporal changes in resources. Stud. Avian Biol. 13: 333–336. Google Scholar

37.

A. Rolando , P. Laiolo 1997. A comparative analysis of the diets of the Chough Pyrrhocorax pyrrhocorax and the Alpine Chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139: 388–395. Google Scholar

38.

K. V. Rosenberg , R. J. Cooper 1990. Approaches to avian diet analysis. Stud. Avian Biol. 13: 80–90. Google Scholar

39.

T. W. Schoener 1965. The evolution of bill size differences among sympatric congeneric species of birds. Evolution 19: 189–213. Google Scholar

40.

O. Sedláček , R. Fuchs , A. Exnerová 2004. Redstart (Phoenicurus phoenicurus) and Black Redstart (P. ochruros) in a mosaic urban environment: neighbours or rivals? J. Avian Biol. 35: 336–343. Google Scholar

41.

O. Sedláček , B. Cikánová , R. Fuchs 2006. Heterospecific rival recognition in Black Redstart (Phoenicurus ochruros). Ornis Fennica 83: 153–161. Google Scholar

42.

C. J. F. ter Braak , P. Šmilauer 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, N.Y. Google Scholar

43.

M. Tokeshi 1999. Species coexistence. Ecological and evolutionary perspectives. Blackwell Science. Google Scholar

44.

J. A. Wiens 1989. The Ecology of Bird Communities. Conceptual Issues and the Evidence. Princeton Univ. Press, Cambridge. Google Scholar

45.

H. Wolda 1990. Food availability for an insectivore and how to measure it. Stud. Avian Biol. 13: 38–43. Google Scholar
Ondřej Sedláček, Roman Fuchs, and Alice Exnerová "Differences in the Nestling Diets of Sympatric Redstarts Phoenicurus phoenicurus and Black Redstarts P. ochruros: Species-Specific Preferences or Responses to Food Supply?," Acta Ornithologica 42(1), 99-106, (1 July 2007). https://doi.org/10.3161/068.042.0104
Received: 1 December 2006; Accepted: 1 March 2007; Published: 1 July 2007
KEYWORDS
diet selection
interspecific competition
local sympatry
redundancy analysis
seasonal variation
urban environment
variance partitioning
Back to Top