Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Polar and alpine environments are changing rapidly due to increases in temperature, which are amplified in the Arctic, as well as changes in many local factors. The impacts on ecosystems and their function have potential consequences for local residents and the global community. Tundra areas are vast and diverse, and the knowledge of geographical variation in environmental and ecosystem change is limited to relatively few locations, or to remote sensing approaches that are limited mostly to the past few decades. The International Polar Year, IPY, provided a context, stimulus and timely opportunities for re-visiting old research sites and data sets to collate data on past changes, to pass knowledge from old to new generations of researchers and to document environmental characteristics of sites to facilitate detection and attribution of future changes. Consequently, the project “Retrospective and Prospective Vegetation Change in the Polar Regions: Back to the Future,” BTF, was proposed and endorsed as an IPY activity (project #512). With national funding support, teams of researchers re-visited former sites and data sets throughout the Arctic and some alpine regions. These efforts have amounted to a gamut of “BTF” studies that are collectively geographically expansive and disciplinary diverse. A selection of these studies are introduced and presented in the current issue together with a brief synthesis of their findings.
Monitoring of permafrost has been ongoing since 1978 in the Abisko area, northernmost Sweden, when measurements of active layer thickness started. In 1980, boreholes were drilled in three mires in the area to record permafrost temperatures. Recordings were made twice per year, and the last data were obtained in 2002. During the International Polar Year (2007–2008), new boreholes were drilled within the ‘Back to the Future’ (BTF) and ‘Thermal State of Permafrost’ (TSP) projects that enabled year-round temperature monitoring. Mean annual ground temperatures (MAGT) in the mires are close to 0°C, ranging from -0.16 to -0.47°C at 5 m depth. Data from the boreholes show increasing ground temperatures in the upper and lower part by 0.4 to 1°C between 1980 and 2002. At one mire, permafrost thickness has decreased from 15 m in 1980 to ca. 9 m in 2009, with an accelerating thawing trend during the last decade.
A unique long term, 49-year record (divided into three time periods 1961–1976, 1977–1992, and 1993–2009) of snow profile stratigraphy from the Swedish sub Arctic, was analyzed with a focus on changes in snow characteristics. The data set contained grain size, snow layer hardness, grain compactness, and snow layer dryness, observed every second week during the winter season. The results showed an increase in very hard snow layers, with harder snow in early winter and more moist snow during spring. There was a striking increase in the number of observations with very hard snow at ground level over time. More than twice as many occasions with hard snow at ground level were observed between 1993 and 2009 compared to previous years, which may have a significant effect on plants and animals. The changes in snow characteristics are most likely a result of the increasing temperatures during the start and the end of the snow season.
Results of research into climate and glacier dynamics in the Altai Mountains (Russia) over the period of instrumental observations (1952–2008) are presented in this article. About 1030 glaciers with a total area of 805 km2 and volume of 42.5 km3 have been recorded in the Altai Region. The average summer air temperature in different regions of the Altai has increased during the study period from about 0.2°C (Aktru) to 1.1°C (Akkem). The annual atmospheric precipitation rate has also increased, by 8–10%. Since 1952, the glacier area in different regions of the Altai has decreased by 9–27%, and volume by 12–24%. By 2008, as a result of degradation, the total number of glaciers was 953 with an area of 724 km2 and volume of 38 km3.
The arctic tundra ponds at the International Biological Program (CBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30–40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.
A 30-year series (1978–2007) of photographic records were analysed to determine changes in lake ice cover, local (low elevation) and montane (high elevation) snow cover and phenological stages of mountain birch (Betula pubescens ssp. czerepanovii) at the Abisko Scientific Research Station, Sweden. In most cases, the photographic-derived data showed no significant difference in phenophase score from manually observed field records from the same period, demonstrating the accuracy and potential of using weekly repeat photography as a quicker, cheaper and more adaptable tool to remotely study phenology in both biological and physical systems. Overall, increases in ambient temperatures coupled with decreases in winter ice and snow cover, and earlier occurrence of birch foliage, signal a reduction in the length of winter, a shift towards earlier springs and an increase in the length of available growing season in the Swedish sub-arctic.
Canopy-forming shrubs are reported to be increasing at sites around the circumpolar Arctic. Our results indicate expansion in canopy cover and height of willows on Herschel Island located at 70° north on the western Arctic coast of the Yukon Territory. We examined historic photographs, repeated vegetation surveys, and conducted monitoring of long-term plots and found evidence of increases of each of the dominant canopy-forming willow species (Salix richardsonii, Salix glauca and Salix pulchra), during the twentieth century. A simple model of patch initiation indicates that the majority of willow patches for each of these species became established between 1910 and 1960, with stem ages and maximum growth rates indicating that some patches could have established as late as the 1980s. Collectively, these results suggest that willow species are increasing in canopy cover and height on Herschel Island. We did not find evidence that expansion of willow patches is currently limited by herbivory, disease, or growing conditions.
We report on a revisit in 2009 to sites where vegetation was recorded in 1967 and 1970 on Disko Island, West Greenland. Re-sampling of the same clones of the grass Phleum alpinum after 39 years showed complete stability in biometrics but dramatic earlier onset of various phenological stages that were not related to changes in population density. In a fell-field community, there was a net species loss, but in a herb-slope community, species losses balanced those that were gained. The type of species establishing and increasing in frequency and/or cover abundance at the fell-field site, particularly prostrate dwarf shrubs, indicates a possible start of a shift towards a heath, rather than a fell-field community. At the herb-slope site, those species that established or increased markedly in frequency and/or cover abundance indicate a change to drier conditions. This is confirmed both by the decrease in abundance of Alchemilla glomerulans and Epilobium hornemanii, and the drying of a nearby pond. The causes of these changes are unknown, although mean annual temperature has risen since 1984.
Greening of the Arctic due to climate warming may provide herbivores with richer food supplies, resulting in higher herbivore densities. In turn, this may cause changes in vegetation composition and ecosystem function. In 1982–1984, we studied the ecology of non-breeding moulting geese in Jameson Land, low Arctic East Greenland. By then, geese consumed most of the graminoid production in available moss fens, and it appeared that the geese had filled up the available habitat. In 2008, we revisited the area and found that the number of moulting geese and the temperature sum for June–July had tripled, while the above-ground biomass in a moss fen ungrazed by geese had more than doubled. In a goose-grazed fen, the overall plant composition was unchanged, but the frequency of graminoids had decreased and the area with dead vegetation and open spots had increased. We suggest that climate warming has lead to increased productivity, allowing for higher numbers of moulting geese. However, the reduction of vegetation cover by grazing may have longer term negative consequences for the number of geese the habitat can sustain.
The changes in the vascular plant flora of Tasiilaq, low arctic Southeast Greenland, between around 1900 and 2007 were studied by comparing the data from historical literature with those of the field observations performed between the late 1960s and 2007. Since 1900, the percentage of widely distributed arctic species distinctly decreased, whereas that of the low arctic species somewhat increased, and boreal species hardly increased. Vegetation monitoring revealed minor changes and showed that several thermophilous and xerophilous species increased between 1968/1969 and 2007, whereas some hygrophilous species decreased. Repeated vegetation mapping of a shallow pond revealed conspicuous changes suggesting increased evaporation/precipitation ratios associated with environmental warming up and decreasing snow accumulation in winter, in line with results of previous investigations. In spite of climate warming, expansion of the town and increasing human impact, flora and vegetation on the whole appeared rather stable during the last 40 years without invading species or introductions.
Repeat measurements from long-term plots provide precise data for studying plant community change. In 2010, we visited a remote location in Yukon, Canada, where a detailed survey of alpine tundra communities was conducted in 1968. Plant community composition was resurveyed on the same four slopes using the same methods as the original study. Species richness and diversity increased significantly over the 42 years and non-metric multidimensional scaling indicated that community composition had also changed significantly. However, the direction and magnitude of change varied with aspect. Dominant species were not replaced or eliminated but, instead, declined in relative importance. Fine-scale changes in vegetation were evident from repeat photography and dendro-ecological analysis of erect shrubs, supporting the community-level analysis. The period of study corresponds to a mean annual temperature increase of 2°C, suggesting that climate warming has influenced these changes.
This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine—birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types—“birch forest-heath with mosses” and “meadow with low herbs”, while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.
Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 × 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009–2010 and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (≥3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.
Global change affects alpine ecosystems by, among many effects, by altering plant distributions and community composition. However, forecasting alpine vegetation change is challenged by a scarcity of studies observing change in fixed plots spanning decadal-time scales. We present in this article a probabilistic modeling approach that forecasts vegetation change on Niwot Ridge, CO using plant abundance data collected from marked plots established in 1971 and resampled in 1991 and 2001. Assuming future change can be inferred from past change, we extrapolate change for 100 years from 1971 and correlate trends for each plant community with time series environmental data (1971–2001). Models predict a decreased extent of Snowbed vegetation and an increased extent of Shrub Tundra by 2071. Mean annual maximum temperature and nitrogen deposition were the primary a posteriori correlates of plant community change. This modeling effort is useful for generating hypotheses of future vegetation change that can be tested with future sampling efforts.
Terry V. Callaghan, Craig E. Tweedie, Jonas Åkerman, Christopher Andrews, Johan Bergstedt, Malcolm G. Butler, Torben R. Christensen, Dorothy Cooley, Ulrika Dahlberg, Ryan K. Danby, Fred J. A. Daniëls, Johannes G. de Molenaar, Jan Dick, Christian Ebbe Mortensen, Diane Ebert-May, Urban Emanuelsson, Håkan Eriksson, Henrik Hedenås, Greg. H. R. Henry, David S. Hik, John E. Hobbie, Elin J. Jantze, Cornelia Jaspers, Cecilia Johansson, Margareta Johansson, David R. Johnson, Jill F. Johnstone, Christer Jonasson, Catherine Kennedy, Alice J. Kenney, Frida Keuper, Saewan Koh, Charles J. Krebs, Hugues Lantuit, Mark J. Lara, David Lin, Vanessa L. Lougheed, Jesper Madsen, Nadya Matveyeva, Daniel C. McEwen, Isla H. Myers-Smith, Yuriy K. Narozhniy, Håkan Olsson, Veijo A. Pohjola, Larry W. Price, Frank Rigét, Sara Rundqvist, Anneli Sandström, Mikkel Tamstorf, Rik Van Bogaert, Sandra Villarreal, Patrick J. Webber, Valeriy A. Zemtsov
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere