Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Aspidoscelis tesselata exhibits significant clonal diversity despite its recent origin (from hybridization between A. tigris marmorata and A. gularis septemvittata) and its parthenogenetic mode of reproduction. Two hypotheses have been advanced to explain the derivation of its genetic and morphological variation: (1) separate parthenogenetic lineages derived from several different F1 hybrid zygotes, and (2) postformational mutations occurring in a parthenogenetic lineage derived from a single F1 hybrid zygote. We evaluated these competing hypotheses with evidence from skin transplant studies, protein electrophoresis, multivariate analyses of morphological characters, and geographic distributions of pertinent groups. Starting with the clonal diversity at Conchas Lake State Park, San Miguel County, New Mexico, we expanded the study to include populations at Sumner Lake State Park and Fort Sumner (De Baca County), Puerto de Luna (Guadalupe County), and Arroyo del Macho and Roswell (Chaves County). This enabled us to resolve origins of color pattern classes and genotypic clones in eastern New Mexico. We used pattern class designations C-E and E-C to signify that elements of both pattern classes were expressed in populations at Conchas Lake and Arroyo del Macho.
The two pattern classes at Conchas Lake (C-E and D) had the same F1 hybrid karyotype (2n = 46), with haploid sets of 23 chromosomes characteristic of each progenitor species of A. tesselata. Clonal variation was found at 4 of the 35 gene loci examined electrophoretically: GPI (glucose-6-phosphate isomerase), EST2 (a muscle esterase), sACOH (aconitase hydratase), and MPI (mannose-6-phosphate isomerase). The strong congruence between genotype and morphological variation facilitated the characterization of three morphological subgroups of C-E. Although these subgroups lacked individually distinctive color patterns, they were discriminated effectively in canonical variate analyses based on scalation characters and a priori groups of known genotype.
Nine individuals of Conchas C-E and four individuals of Conchas D have histocompatibility data from a recent skin transplant study (Cordes and Walker, 2003). The subgroup identities of the C-E specimens document histocompatibility among the three morphological subgroups of C-E and between each subgroup and representatives of pattern class D. This evidence, together with Maslin's (1967) report of histocompatibility between pattern classes C and E, suggests that all color pattern classes, morphological subgroups, and genotypic clones of A. tesselata can be traced back to a single ancestral F1 hybrid zygote.
A pair of pale broken lines in the middorsal region distinguishes pattern class D from the other pattern classes. However, Conchas ID shared the GPI −100/−96, EST2 100/96 genotype with Conchas IC-E, and individuals of these pattern classes were very similar in multivariate meristic characters. Sumner D expressed the same type of relationship, resembling the syntopic population of Sumner C rather than the other population of D. In addition, certain individuals of Sumner C had partially divided (D-like) vertebral lines—additional evidence that Sumner C was ancestral to Sumner D. We conclude that pattern class New Mexico D is polyphyletic, having originated twice from different individuals of C-E and C in the vicinities of Conchas and Sumner Lakes.
The northern position of pattern classes C and C-E in the range of A. tesselata is consistent with recent
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere