Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Hybridization between the unisexual Aspidoscelis dixoni and the bisexual Aspidoscelis tigris punctilinealis in southwestern New Mexico is documented by observations and analyses of external morphology (coloration, size, scalation), chromosomes (karyotypes), nuclear gene products (allozymes), and mitochondrial DNA. The locality (Hidalgo County, Antelope Pass of the Peloncillo Mountains, centered at 10.5 km west of Animas), consisting of only a few square kilometers, is the only place where this particular unisexual clone of A. dixoni exists. Because of its extreme rarity in recent years, A. dixoni has been listed as an Endangered Species in New Mexico, and the status of its populations has received intense study. Today, the cause(s) of endangerment remains unknown, although we hypothesize that interspecific competition may be the problem.
Aspidoscelis dixoni is a diploid unisexual species that normally reproduces by parthenogenetic cloning, as demonstrated here with genetic data from laboratory-reared lizards. However, fertilization of its eggs in Antelope Pass is possible if mating occurs with a male of the syntopic bisexual species A. tigris punctilinealis. The resulting hybrids closely resemble their maternal parent morphologically, but they are triploid and the females observed to date have been sterile.
Aspidoscelis t. punctilinealis is a recent invader of southwestern New Mexico. It is the dominant species of whiptail lizard today in the low-elevation, semiarid habitat of creosote desertscrub in Antelope Pass. The present rarity of A. dixoni in Antelope Pass, in contrast to its abundance a few decades ago, may result from negative interactions with this dominant species, including asymmetrical destabilizing hybridization.
Only a few other populations of A. dixoni are known to exist, each in a limited area in southwestern Texas, so there is a hiatus of nearly 500 km between the small and restricted populations in New Mexico and Texas. Comparative genetic data presented here indicate that although these populations are similar, the population in New Mexico represents a unique clone. It has three alleles at 3 nuclear gene loci (among 31 examined) that distinguish it from the Texan populations, and it lacks a microchromosome that occurs in Texan populations. In addition, in this paper we present new comparative genetic data confirming that the origin of A. dixoni itself was from a hybrid between an A. tigris marmorata ♀ × A. gularis septemvittata ♂, consistent with earlier studies.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere