Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Herein we describe the nests (including structure, closure, orientation, and depth of cells) of the bee Haetosmia vechti Peters found nesting in Rehovot, Israel. The nesting biology of H. vechti mirrors the ancestral nesting biology within the Osmia group of the Osmiini. Nests in sandy soil consist of an excavated burrow, ending below in a small cluster of vertical cells. The cells possess firm walls of masticated leaf pulp of Centaurea procurrens Spreng. and Heliotropiumsuaveolens M. Bieb., and are covered with pebbles and sand grains.
The last larval instar and pupa of Haetosmia vechti are described, as is its cocoon. The immature stages exhibit the basic features of megachilid bees, but tend to have a thinner body vestiture compared to other studied taxa.
In addition, we report new information on and review published accounts concerning the pollen collecting behavior of the genus Haetosmia Popov, which contains three species. Pollen taken from scopal hairs of 68 females collected at 17 sites in Turkestan, Morocco, Israel, and the United Arab Emirates was identified as originating solely from Heliotropium L. (Boraginaceae), which strongly suggests that all three Haetosmia species are narrowly oligolectic on this plant genus. In females of all three species, the second segment of the labial palpus is densely covered with rather long, apically curved and capitate bristles, an adaptation to collect Heliotropium pollen from anthers that are hidden inside the narrow corolla tube. Similar pollen-harvesting bristles specifically adapted to exploit flowers of Heliotropium seem to have evolved independently a number of times on different continents, in bees of four families.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere