Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Jerome G. Rozen Jr., Bryan N. Danforth, Corey Shepard Smith, Brenna L. Decker, Nicholas N. Dorian, Delina Dority, Shelby Kerrin Kilpatrick, Erin Krichilsky, Angela N. Laws, Katherine R. Urban-Mead
The first part of this publication, written by a group of participants in Bee Course 2018, results from the discovery of three nests of Caupolicana yarrowi (Cresson, 1875) at the base of the Chiricahua Mountains in southeastern Arizona. The nests are deep with branching laterals that usually connect to large vertical brood cells by an upward turn before curving downward and attaching to the top of the chambers. This loop of the lateral thus seems to serve as a “sink trap,” excluding rainwater from reaching open cells during provisioning. Although mature larvae had not yet developed, an egg of C. yarrowi was discovered floating on the provisions allowing an SEM examination of its chorion, the first such study for any egg of the Diphaglos-sinae. Larval food for this species at this site came from Solanum elaeagnifolium Cav. (Solanaceae). Nests were parasitized by Triepeolus grandis (Friese, 1917) (Epeolini), which previously was known to attack only Ptiloglossa (Diphaglossinae: Caupolicanini).
The subterranean nest cells of the desert bee Caupolicana yarrowi (Colletidae), which are enveloped by a casing of hardened soil that easily separates from the surrounding matrix, are discussed in a separate appendix. Chemical analysis revealed the casing to be rich in reducing sugars, indicating that the mother bee had regurgitated floral nectar onto the rough interior walls of the cell cavity before smoothing and waterproofing them. This novel use of nectar in nest construction is compared with that of other bee species that bring water to a nest site to soften soil for excavation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere