Open Access
How to translate text using browser tools
31 January 2025 On the Type Series of Hylodes petropolitanus Wandolleck, 1907 (Anura, Cycloramphidae), with Taxonomic Considerations of Eupsophus fuliginosus Fitzinger, 1861
Ariadne Fares Sabbag, Délio Baêta, Taran Grant, Renato N. Feio, Célio F.B. Haddad
Author Affiliations +
Abstract

Thoropa comprises seven recognized species, including T. bryomantis, T. lutzi, T. megatympanum, T. miliaris, T. petropolitana, T. saxatilis, and T. taophora. It was believed that the syntypes of T. petropolitana were destroyed during the Dresden bombings in World War II; however, there are two extant syntypes of T. petropolitana in the amphibian collection of the American Museum of Natural History where they were transferred from the Staatlichen Museum für Tierkunde Dresden in 1923. Herein we designate a lectotype for T. petropolitana and provide a taxonomic history of the species, a synonymy, a redescription, a summary of its geographic distribution, and comments about its conservation. We also review the taxonomic status of Eupsophus fuliginosus Fitzinger, 1861, and discuss its implication for the taxonomic status of T. petropolitana.

INTRODUCTION

The frog genus Thoropa Cope, 1865, comprises seven valid species, six of which are endemic to the Atlantic Forest—including T. bryomantis Assis et al., 2021; T. lutzi Cochran, 1938; T. miliaris (Spix, 1824); T. petropolitana (Wandolleck, 1907); T. saxatilis Cocroft and Heyer, 1988; and T. taophora (Miranda-Ribeiro, 1923)—and one, T. megatympanum Caramaschi and Sazima, 1984, endemic to the campo rupestre in the Espinhaço mountain chain. The species are separated into two phenetic groups: the T. miliaris group, composed of the “large” species T. megatympanum, T. miliaris, T. saxatilis, and T. taophora, and the T. petropolitana group, composed of the “small” species T. bryomantis, T. lutzi, and T. petropolitana (Assis et al., 2021; Nunes-de-Almeida et al., 2016; Sabbag et al., 2022a; Sabbag et al., 2018).

Thoropa lutzi and T. petropolitana have not been observed in nature for decades, despite numerous searches at known localities of occurrence (Sabbag et al., 2018). Thoropa petropolitana was known to occur mainly in the Serra dos Órgãos mountain range, in Rio de Janeiro state (Carvalho-e-Silva et al., 2020; ICMBio, 2018a), although there are also records in Espírito Santo and São Paulo states (Assis et al., 2021; Feio, 2002; Rossa-Feres et al., 2011). For that reason, both species are assigned to threat categories in international, Brazilian, and regional red lists (Haddad, 2008; Morais et al., 2012; Pimenta et al., 2005). Specifically, T. petropolitana is listed as “critically endangered” and “possibly extinct” in the International Union for Conservation of Nature – IUCN Red List (IUCN and Instituto Boitatá, 2023), “critically endangered” and “possibly extinct” in the official Brazilian Red List (DOU, 2022a), “critically threatened” in Espírito Santo state (DOE-ES, 2022), “endangered” in Rio de Janeiro state (Bergallo et al., 2000a), and “data deficient” in São Paulo state (Bressan et al., 2009).

For decades, the type specimens of Hylodes petropolitanus were believed to have been destroyed during the Dresden bombings in World War II (Obst, 1977). However, during a systematic revision of the genus, we discovered extant syntypes of Thoropa petropolitana in the amphibian collection of the American Museum of Natural History. We then summarize the taxonomic history of T. petropolitana, designate a lectotype, redescribe the species on the basis of the type material and additional specimens from multiple amphibian collections, and clarify its identity relative to other species of Thoropa. We also provide information about the natural history and geographic distribution of T. petropolitana and investigate the taxonomic status of Eupsophus fuliginosus Fitzinger, 1861, currently a junior synonym of T. miliaris (Cochran, 1955; Frost, 2025) but possibly related to T. petropolitana (Cocroft and Heyer, 1988).

MATERIALS AND METHODS

We examined specimens of Thoropa from the following zoological collections (by acronym, following Sabaj, 2020; see appendix): AAG-UFU, AL-MN, AMNH, CAS, CAS-SUA, CFBH, CM, DZSJRP, EI-UFRRJ, FMNH, IRSNB, MBML, MCNAM, MCP, MCZ, MNHN, MNRJ, MVZ, MZUESC, MZUFV, MZUSP, NMW, TNHC, UFMG, UFRRJ, UMMZ, USNM, ZMUC, ZUEC, and ZUFRJ. Thoropa petropolitana syntypes at AMNH and specimens from IRSNB, MNHN, NMW, and ZMUC were analyzed through photographs and data provided by collection managers. Examined specimens of Thoropa petropolitana and the other Thoropa species are listed in supplementary appendix SA1 available online ( https://doi.org/10.5531/sd.sp.72). To compile specimen records, we kept the names of localities as registered but corrected spelling and abbreviated Brazilian state names.

We examined specimens using a stereomicroscope with the aid of Lugol's solution (Bock and Shear, 1972) or methylene blue when necessary. For adults, we analyzed 15 meristic characters using methods previously described (Duellman, 2001) and summarized by Watters et al. (2016), with the addition of two more measurements (arm diameter and forearm diameter, following Sabbag et al., 2022a), as follows: snout-vent length (SVL), head length, head width, tympanum diameter, eye diameter, interorbital distance, internarial distance, eye-nostril distance, eye-snout distance, forearm diameter, arm diameter, hand length, femur length, tibia length, and foot length. For tadpoles, we analyzed the following 12 measurements, as defined by McDiarmid and Altig (1999): total length, body length, tail length, body width, body height, maximum tail height, nostril-snout distance, eye-snout distance, eye-nostril distance, interorbital distance, oral disc width, and eye diameter. Additionally, we also measured the SVL of adult specimens of the other species of Thoropa for body size comparisons, not considering juvenile males (males without PEPs, see below). We took measurements to 0.1 mm using Mitutoyo® digital callipers, with the exception of the tadpole specimen of AMNH, measured with ImageJ (Schneider et al., 2012) from scope pictures.

We numbered fingers from II to V (sensu Fabrezi and Alberch, 1996). Some skull features follow the terminology of Trueb (1993), while terminology for snout shape follows Duellman (1970). The term “meniscus” is used following Colaço et al. (2020). The term “discoidal fold” follows Taboada et al. (2013). Vocal sac and slit terminologies follow Elias-Costa et al. (2017). Nuptial pad terminology follows Luna et al. (2018). For most male Thoropa petropolitana, we counted the papillary epidermal projections (PEPs sensu Luna et al., 2018) on both hands. We identified males through the presence of PEPs and (depending on the species) vocal slits and vocal sacs, and we identified females through the presence of oocytes. When a specimen did not possess PEPs and it was not possible to observe oocytes by dissection or through translucent skin, we scored it as a “probable female.” We considered a male to be adult when it had any PEP (following Sabbag et al., 2022a, concept of adult male for some Thoropa species) and a female to be adult when it possessed expanded and convoluted oviducts, or enlarged oocytes.

Given that Thoropa petropolitana was described in 1907 and many additional specimens have been collected in the intervening century, we provide an updated diagnosis and redescription. We performed a thorough analysis of all publications that studied or cited T. petropolitana and its synonyms since Wandolleck (1907) first described the species as Hylodes petropolitanus. With these publications, we built a chresonymy with the valid synonyms of T. petropolitana including all scientific publications. We did not include a chresonymy of Cystignathus fuliginosus and Eupsophus fuliginosus due the nomenclatural problems associated with these taxa (see Results section below). To redescribe T. petropolitana, we compiled information on tadpole morphology, coloration in life, natural history, and the advertisement call from literature. Additionally, we constructed a distribution map of the specimens with ArcGIS v.10.1 (ESRI). As all the specimens of T. petropolitana were collected without GPS equipment, we obtained geographical coordinates through Google EarthTM v.7.3.4 when precise locality details were available or used the centroid coordinates in ArcGIS v.10.1 (ESRI) when only the Brazilian municipality was available (supplementary appendix SA1). We did not map localities given only as Brazil or a Brazilian state. Since the last collection dates to 1982, we also undertook two field trips to search for new specimens of T. petropolitana in Parque Nacional da Serra dos Órgãos, Rio de Janeiro state.

RESULTS

Taxonomic history of Hylodes petropolitanus Wandolleck, 1907: Wandolleck (1907) described Hylodes petropolitanus on the basis of adults, tadpoles, and egg clutches (as evidenced by his text and figs. 9A–F; fig. 1), all collected in the municipality of Petrópolis (“Urwäldern von Petropolis,” Rio de Janeiro, Brazil in the original text) by Friedrich Ohaus in 1906 (no specimen numbers reported). The species was referred to Hylodes Fitzinger, 1826, on the basis of the presence of T-shaped terminal phalanges, a typical characteristic of what was then considered Hylodes.

Shortly thereafter, Boulenger (1909) transferred Hylodes petropolitanus to the genus Elosia Tschudi, 1838, forming the combination of Elosia petropolitanus, but subsequent authors continued using the original combination (e.g. Baumann, 1912; Nieden, 1923). Without comment, Noble (1917) used the new combination Eleutherodactylus petropolitanus.

Miranda-Ribeiro (1923) studied the hylodids in the Museu Paulista and considered Rana miliaris Spix, 1824 (type species of Thoropa Cope, 1865) and Hyla abbreviata Spix, 1824, to pertain to the genus Ololigon (incorrect spelling of Ololygon Fitzinger, 1843) under the combinations Ololigon [sic] miliaris and Ololigon [sic] abbreviatus. In the same study, Miranda-Ribeiro (1923) concluded (albeit without having examined the specimens) that Wandolleck (1907) had described Hylodes petropolitanus on the basis of juvenile specimens and recognized three varieties (i.e., subspecies according to the International Code of Zoological Nomenclature, ICZN, 1999, Art. 45.6.4) of O. abbreviatus: Ololigon abbreviatus taophora, Ololigon abbreviatus petropolitana, and Ololigon abbreviatus abbreviata. Subsequently, Miranda-Ribeiro (1926) synonymized Ololigon abbreviatus (and its varieties) with O. miliaris.

Noble (1925) studied Hylodes petropolitanus in respect to osteology, life history, and relationships with other genera. Next, Müller (1927) considered Hylodes petropolitanus to be a valid species and transferred it to Eleutherodactylus Duméril and Bibron, 1841. In the same year, Noble (1927) transferred Hylodes petropolitanus to Borborocoetes Bell, 1843, under the new combination of Borborocoetes petropolitanus, since the osteology of H. petropolitanus is nearly identical to Borborocoetes miliaris (= Thoropa miliaris; Noble, 1925).

Parker (1932) succinctly discussed the genera Eupsophus Fitzinger, 1843; Borborocoetes Bell, 1843; Ololygon Fitzinger, 1861; Thoropa Cope, 1865; and Borborocoetea Strand, 1928, and considered Eupsophus to have precedence over the other four generic names. Nevertheless, Cochran (1938) described a new species of Thoropa (T. lutzi Cochran, 1938, holotype USNM 97622) from Recreio dos Bandeirantes, in the southeast of the municipality of Rio de Janeiro (Federal District at that time), and Lutz (1947), in her analysis of the development of non-aquatic frogs, stated that Hylodes petropolitanus belongs to Thoropa, forming the new combination Thoropa petropolitana.

FIG. 1.

Part of plate 1 from Wandolleck (1907), showing figures 9 and 9a–9f of what is currently known as Thoropa petropolitana: (9) dorsal view of a male's hand; (9a) dorsal view of male body; (9b) internal view of mouth; (9c) spawn; (9d) male head in lateral view; (9e) tadpole in lateral view; (9f) tadpole in dorsal view.

img-z5-1_01.jpg

In contrast, Cochran (1955) determined that both Borborocoetes and Thoropa are synonyms of Eupsophus Fitzinger, 1843, recognizing Rana miliaris, Hylodes petropolitanus, and Thoropa lutzi as valid species under the following combinations: Eupsophus miliaris, E. petropolitanus, and E. lutzi. Cochran (1955) also considered Ololigon abbreviatus taophora Miranda-Ribeiro and Eupsophus fuliginosus Fitzinger, 1861, to be synonyms of Rana miliaris (sensu Spix).

Gallardo (1965) recognized the osteological similarity of the pectoral girdles of Thoropa and Eupsophus but concluded that differences in the atlas and sternum allow Thoropa to be recognized as a valid genus with three species in Brazil. Bokermann (1965) agreed with Gallardo's (1965) resurrection of Thoropa and summarized the available information on adults, tadpoles, and advertisement calls to support the recognition of T. miliaris, T. petropolitana, and T. lutzi. He also concluded that T. petropolitana and T. lutzi are more closely related to each other than to T. miliaris.

Caramaschi and Sazima (1984) described Thoropa megatympanum and Cocroft and Heyer (1988) described T. saxatilis. After that, the taxonomy of Thoropa species remained stable until Feio et al. (2006) revised the taxonomy of T. miliaris, designating a neotype for T. miliaris and resurrecting T. taophora (Miranda-Ribeiro, 1923). More recently, the populations of Thoropa from the northern region of the Serra da Mantiqueira in Southeast Brazil (previously identified as T. lutzi) were described as T. bryomantis by Assis et al. (2021), bringing the total number of recognized species to seven.

Rediscovery of Hylodes petropolitanus Wandolleck, 1907, syntypes and lectotype designation: As noted above, Noble (1925) briefly discussed the life history, osteology (on basis of the dissection of an adult), and relationships of Thoropa petropolitana (as Hylodes petropolitanus). In his account, he (Noble, 1925: 14) acknowledged the donation of specimens from Wandolleck's (1907) description to AMNH:

Thanks to the kindness of the Director of the Dresden Museum, there is now in the collections of the American Museum one of the adults, one of the larvae, and two of the eggs which Wandolleck described.

No other information about the syntypes of Thoropa petropolitana was presented until the publication of the “Frogs of Southeastern Brazil” by Cochran (1955), who traveled to Europe in 1938 to study herpetological collections in museums. In the section on T. petropolitana (as Eupsophus petropolitanus), she reported that she examined three syntypes of this species under voucher number KZAEM D 2037 (currently MTKD D 2037), two with spines on their hands (males of 20 and 22 mm SVL, respectively) and one without spines (presumably a female, 21 mm SVL; Cochran, 1955: 300). In the list of specimens examined, she clarified that KZAEM D 2037 included three adults and “many tadpoles.”

During World War II, the herpetological collections of the Staatlichen Museum für Tierkunde Dresden were transferred to cellars of the Residenzschloss, the castle in the city of Dresden (Fritz, 2002; U. Fritz, personal commun.); however, during the bombings on 13–14 February, 1945, the castle was destroyed, along with most of the herpetological collections, reducing the number of specimens from 6704 to 98 (Fritz, 2002; Obst, 1977; Reichert, 1954, 1956). Obst (1977) reported that the collection catalog was preserved, and he listed the extant and destroyed types of the Staatlichen Museums für Tierkunde, Dresden. The syntypes of Hylodes petropolitanus Wandolleck, 1907, under record number MTKD D 2037—four adults, five tadpoles, and two egg clutches—were listed as destroyed (Obst, 1977). Through corresponding with Markus Auer (Museum für Tierkunde, Dresden; on 15 February 2023), we confirmed that the original catalog of the collection includes the following information about MTKD D 2037: “4 + 5 Kaulquappen mit 2 Eierhaufen Spir. Type” (in English: 4 + 5 tadpoles with 2 egg masses spirit. Type), and nothing else. The sum of adult specimens examined by Noble (1925) and Cochran (1955) correspond to the number of adult specimens informed in the museum's catalog.

The G.K. Noble archive at the AMNH includes the correspondence exchanged between G.K. Noble and a representative of the Director of the Dresden Museum (no personal name is given in the correspondence) between May 7 and June 11, 1923, confirming that one male, one tadpole, and two eggs were donated to Noble/AMNH (fig. 2). Noble (1925) did not report specimen numbers, but AMNH A32976 (adult male) and AMNH A193770 (a single tadpole) were cataloged as having been collected by “Wandalleck” and identified by Werner C.A. Bokermann in 1968 as “Thoropa lutzi.” The adult (AMNH A32976) is a male with nuptial pads and a small incision on the chest that allows the pectoral girdle to be examined, consistent with Noble's (1925) account. The eggs mentioned in the correspondence were not found.

Considering Bokermann's identification of the specimens as Thoropa lutzi, we compared the adult and tadpole to topotypes of T. petropolitana and the holotype and topotypes of T. lutzi (see examined material in supplementary appendix SA1), confirming that they agree with the topotypes of T. petropolitana and not with T. lutzi. Consequently, we conclude that the adult male and one tadpole deposited under voucher number AMNH A32976 are syntypes of Hylodes petropolitanus Wandolleck, 1907. Given that the syntypes include different semaphoronts, in accordance with amended article 74.7.3 of the Code (ICZN, 2003), we designate the adult male AMNH A32976 as lectotype of Hylodes petropolitanus Wandolleck, 1907, in order to clarify the application of the name, with the tadpole AMNH A193770 becoming a paralectotype.

Taxonomic history of Eupsophus fuliginosus Fitzinger (1861): Although currently in the synonymy of Thoropa miliaris, Cocroft and Heyer (1988) considered the holotype of Eupsophus fuliginosus to be probably T. petropolitana. To clarify the identity of this specimen, we detail the history of the name Eupsophus fuliginosus.

After studying the material collected by the Austrian Novara Expedition that circumnavigated the globe between April 1857 and July 1859, Fitzinger (1861: 387) concluded that some of the amphibian specimens represented previously unknown species, including “Eupsophus fuliginosus von Brasilien”; however, Fitzinger (1861) did not present a diagnosis, illustration, citation, or specimen number for E. fuliginosus. As such, according to article 12 of the Code (ICZN, 1999), Eupsophus fuliginosus Fitzinger, 1861, is a nomen nudum, as noted previously by Parker (1932). Seven years later, Steindachner (1867: 25) provided a validating description of the species, which he explicitly attributed to Fitzinger as “Cystignathus (Eups.) fuliginosus Fitzinger.” However, Article 50.1.1 explicitly indicates that the authorship of a nomenclatural act must also satisfy the criteria of availability. Since Fitzinger (1861) does not satisfy the criteria of availability, the authorship of this name cannot be attributed to him and must instead be attributed to Steindachner (1867).

FIG. 2.

One of the letters exchanged between G.K. Noble and an unnamed representant of the Director of the Dresden Museum, confirming that one male, one tadpole, and two eggs arrived at the AMNH.

img-z8-1_01.jpg

The Novara expedition visited 18 locations around the world and was in Rio de Janeiro state from 5–31 August 1857 (Gans, 1955). In Rio de Janeiro, the expedition visited some places in the city and surroundings, including the Serra da Estrella (currently Serra da Estrela, in the municipality of Magé; Bokermann, 1966a) and Petrópolis. Fitzinger (1861) reported only that the specimens of his E. fuliginosus were collected in “Brasilien,” and it was Steindachner (1867) who narrowed the type locality to “Umgebung von Rio de Janeiro” (surroundings of Rio de Janeiro). Parker (1932) reported that the specimen examined by Fitzinger (1861: 342) was “an example of Borborocoetes grayi Bell” (currently a junior synonym of Eupsophus roseus) and considered E. fuliginous to be a nomen nudum.

Cochran (1955) included Eupsophus fuliginosus in the synonymy of E. miliaris (currently Thoropa miliaris) and listed the citation of Parker (1932). She also examined the type specimen of E. fuliginosus (Cochran, 1955: 297), currently identified as NHMW 15847 (see Häulp and Tiedemann, 1978), and considered it to resemble a juvenile specimen of E. miliaris. Nevertheless, Cocroft and Heyer (1988) considered Fitzinger's E. fuliginosus to be T. petropolitana. This conclusion is supported by the (1) collection locality; (2) adult size; (3) dorsal color pattern; (4) relative lengths of fingers I and II (here numbered fingers II and III); and (5) expansion of the tip of the fingers (Cocroft and Heyer, 1988). The specimen lacks PEPs, but Cocroft and Heyer (1988) were informed by the Wien Museum of Natural History that it was a male. They opted to consider Fitzinger's E. fuliginous to be a nomen dubium until a more rigorous examination of holotype could be carried out.

We compared digital images of the holotype of Cystignathus fuliginosus (kindly provided by Georg Gassner and Silke Schweiger, NHMW) to the lectotype of Hylodes petropolitanus. Our observations corroborate those of Cocroft and Heyer (1988) regarding the dorsal color pattern (forming an X) of Thoropa petropolitana; relative lengths of fingers II and III; and expansion of the finger tips. Although Cocroft and Heyer (1988) reported that the holotype is a male, thereby contradicting Steindachner's (1867: 25) report that it is a juvenile female (“Ein kleines Weibchen”), the lack of PEPs (present in adult males), the NHMW curators concurred with Steindachner that it is a female, and its SVL (ca. 23 mm; see Cochran, 1955) and conspicuous discoidal ventral fold lead us to conclude that it is an adult female. Based on our comparison of the holotype of C. fuliginosus and the lectotype H. petropolitanus, we conclude that there are no diagnostic characteristics to recognize them as different species.

In summary, Eupsophus fuliginosus Fitzinger, 1861, is a nomen nudum, as correctly proposed by Parker (1932) and indirectly by Cochran (1955 “1954”), and Hylodes petropolitanus Wandolleck, 1907, is a junior synonym of Cystignathus fuliginosus Steindachner, 1867. To our knowledge, the combination Cystignathus fuliginosus Steindachner, 1867 (not Eupsophus fuliginosus Fitzinger, 1861), was never employed after 1899. In contrast, Hylodes petropolitanus Wandolleck, 1907—or the combinations Eupsophus petropolitanus (Wandolleck, 1907), Thoropa petropolitanus (Wandolleck, 1907) or Thoropa petropolitana (Wandolleck, 1907)—have been used in more than 25 publications by more than 10 authors between 1974 and 2023 including Heyer (1975); Obst (1977); Lynch (1978); Heyer and Crombie (1979); Flier et al. (1980); Maxson and Heyer (1982); Wassersug and Heyer (1983); Erspamer et al. (1986); Roseghini et al. (1986); Cocroft and Heyer (1988); Wassersug and Heyer (1988); Altig and Johnston (1989); Nishikawa and Wassersug (1989); Duellman and Trueb (1994); IUCN (1996); Glaw et al. (1998); Bergallo et al. (1999); Duellman (1999); Heyer (1999); McDiarmid and Altig (1999); Bergallo et al. (2000b); Caramaschi et al. (2000); Van Sluys et al. (2000); Carvalho-e-Silva and Peixoto (2004); Giaretta and Facure (2004); Paglia et al. (2004); Rocha et al. (2004); Young et al. (2004); Eterovick et al. (2005); Haddad and Prado (2005); Pimenta et al. (2005); Silvano and Segalla (2005); Úbeda and Nuñez (2006); Cruz and Feio (2007); Gasparini et al. (2007); Gherardi and Cabral (2007); Passamani and Mendes (2007); Wells (2007); DOE-SP (2008); Feio (2008); ICMBio (2008a); Rossa-Feres et al. (2008); Stuart et al. (2008); Altig et al. (2009); Araújo et al. (2009); Garcia et al. (2009); Paglia and Fonseca (2009); Rocha et al. (2009); Silva (2009); Tanizaki-Fonseca et al. (2009); Van Sluys et al. (2009); DOE-SP (2010); Almeida et al. (2011); Nascimento and Campos (2011); Rossa-Feres et al. (2011); Morais et al. (2012); Trindade-Filho et al. (2012); Acton (2013); Lopes et al. (2013); DOU (2014); Segalla et al. (2014); DOU (2015); Valencia-Aguilar et al. (2015); Campos et al. (2016); Gan et al. (2016); Garey and Provete (2016); Nunes-de-Almeida et al. (2016); Pereyra et al. (2016); Schulte and Rödder (2016); Segalla et al. (2016); Rossa-Feres et al. (2017); Dorigo et al. (2018); Haddad et al. (2018); ICMBio (2018a); Luna et al. (2018); Sabbag et al. (2018); Ferreira et al. (2019a, 2019b); Fraga et al. (2019); Jorgewich-Cohen et al. (2019); Moura et al. (2019); RAN (2019); Segalla et al. (2019); Vasconcelos et al. (2019); Verdade et al. (2019); Carvalho-e-Silva et al. (2020); Cholak et al. (2020); Colaço et al. (2020); Guerra et al. (2020); Assis et al. (2021); Dias et al. (2021); Galetti et al. (2021); Lisboa et al. (2021); Segalla et al. (2021); Straube et al. (2021); Colaço and da Silva (2022); DOU (2022b); DOU (2022a); DOE-ES (2022); Lavilla et al. (2022); Sabbag et al. (2022b); Sabbag et al. (2022a); IUCN and Instituto Boitatá (2023); Toledo et al. (2023); Colaço et al. (2024); Sabbag et al. (2024).

Consequently, although Cystignathus fuliginosus Fitzinger in Steindachner, 1867 predates Hylodes petropolitanus Wandolleck, 1907, article 23.9.1 of the Code (ICZN, 1999) stipulates that prevailing usage of a name should be maintained when “the senior synonym has not been used as a valid name after 1899 [art. 23.9.1.1], and the junior synonym or homonym has been used, in at least 25 works, published by at least 10 authors in the immediately preceding 50 years and encompassing a span of no less than 10 years [art. 23.9.1.2].” Both conditions are met in this case. As such, we consider Hylodes petropolitanus Wandolleck, 1907, to be a nomen protectum and Cystignathus fuliginosus Steindachner, 1867, a nomen oblitum.

Amphibia Linnaeus, 1758
Anura Hogg, 1839
Cycloramphidae Frost et al., 2006
Thoropa petropolitana (Wandolleck, 1907)

  • Eupsophus fuliginosus Fitzinger, 1861 (species description: 387, 414): nomen nudum.

  • Cystignathus fuliginosus Steindachner, 1867 (species description: 25): nomen oblitum.

  • Hylodes petropolitanus Wandolleck, 1907 (species description: 7 [text and fig. D], 8 [text and figs. E–F], 9; pl. captions [figs. 9A–F]; pl. 1 [figs. 9A–9F]); Werner (1908: 94); Ohaus (1909: 35); Baumann (1912: 114 [table], 143 [table], 145, 150, 161 [table], 170 [fig. captions: pl. 5, map III]); Nieden (1923: XXX [systematic index], 408 [species key], 461 [text and figs. 327–328], 462, 567 [alphabetic index]); Miranda-Ribeiro (1923: 830, 831, 840, 842, 843); Noble (1925: 14); Miranda-Ribeiro (1926: 53, 58–60, 202 [references]); Müller (1927: 275); Noble (1927: 84); Lutz (1928: 640); Lutz (1929: 8, 20); Guenther (1931: 392 [index]); Noble (1931: 75, 558 [index]); Noble (1954: 75, 558 [index]); Cochran (1955: 300 [specimens examined]; 417 [index])); Bokermann (1966b: 67, 94, 176 [species index]); Obst (1977: 173, 174); Benchimol and Sá (2007: 243, 252 [facsímile reprint], 262); Lavilla et al. (2022: 215).

  • Elosia petropolitanus: Boulenger (1909: 34); Lavilla et al. (2022: 215).

  • Eleutherodactylus petropolitanus: Noble (1917: 812); 275–276); Cochran (1955: 298, 414, 420); Lavilla et al. (2022: 215).

  • Ololigon abbreviatus: Miranda-Ribeiro (1923: 840 pt., 841 pt., 843 pt.).

  • Ololigon abbreviatus petropolitana: Miranda-Ribeiro (1923: 844; pl. [first specimen, by inference from text, p. 844]); Cochran (1955: 297, 298, 420 [index]); Lavilla et al. (2022: 215).

  • Ololigon abbreviatus petropolitaus [sic]: Miranda-Ribeiro (1923: fig. D) incorrect spelling.

  • Ololigon miliaris petropolitana: Miranda-Ribeiro (1926: 61); Cochran (1955: 298, 420 [index]).

  • Borborocoetes petropolitanus: Noble (1927: 61 [fig. 6], 68); Lavilla et al. (2022: 215).

  • Eupsophus petropolitanus: Cochran (1955: X, 291 [species key], 297–300, 383 [graphic], 414 [index]; pl. 26 [figs. A–D]); Lynch (1972: 2–3); Liner (2009: 14); Lavilla et al. (2022: 215).

  • Hylodes petropolitanas: Cochran (1955: 298 [taxonomic list]) incorrect spelling.

  • Thoropa petropolitanus: Cei (1968: 203); Lynch (1971: 129, 130); Lynch (1972: 2 [by inference]); Müller (1972: 96); Erspamer et al. (1986: 129 [table 2]); Liner (2009: 21).

  • Thoropa petropolitana: Lutz (1947: 246); Lutz (1948: 30 [table 1], 32); Lutz (1954: 157, 161, 169, 179 [species key], 207 [pl. IX, figs. 8, 10], 229); Cochran (1955: 298, 422 [index]); Gallardo (1965: 81, pt.); Bokermann (1965: 526, 237 [fig. 7], 528 [text and figs. 12–13], 529, 530 [text and fig. 14], 531 [text and figs. 19–20], 532 [text and fig. 23], 533 [text, adult species key, tadpole species key], 534, 535, 536; figs. 3, 4); Bokermann (1966b: 67, 64, 176 [species index]); Cei et al. (1967: 330 [table 1]); Bücherl and Buckley (1971: 505 [table II], 684 [index]); Lynch (1971: 26 [fig. 3A], 228 [appendix]); Lynch (1972: 10); Heyer (1975: 18 [fig. 4H], 38, 48 [appendix supplementary data]); Lynch (1978: 28, 50, 52, 54 [specimens examined]); Heyer and Crombie (1979: 17–20); Flier et al. (1980: 504 [text, and table 1]); Maxson and Heyer (1982: 12 [table 3], 13, 14); Wassersug and Heyer (1983: 761 [resúmen], 763, 764 [figs. 1A–C], 765, 766 [text and table 1], 768); Cocroft and Heyer (1988: 209, 210, 213 [adult species key], 214 [tadpole species key], 215 [fig. 3, pt], 216 [text and fig. 6], 218, 219); Heyer et al. (1988: 233); Wassersug and Heyer (1988: 2, 61 [table 1A], 63 [table 1B], 65 [table 1C], 67 [table 1D], 69, 73, 74, 79); Altig and Johnston (1989: 97 [fig. 7G]); Nishikawa and Wassersug (1989: 17 [table 1], 18 [fig. 2A, by inference; fig. 2B pt, by inference, fig. 2C pt, by inference], 19 [fig. 3A–E pt, by inference], 20 [fig. 4]); Heyer et al. (1990: 322); Duellman and Trueb (1994: 41, 46 [table 2.11], 161 [fig. 6.17A], 666 [index]); IUCN (1996: 67); Glaw et al. (1998: 256); Bergallo et al. (1999: 23); Duellman (1999: 324 [appendix 5:1], 630 [index]); Heyer (1999: 24 [text and fig. 5], 25); McDiarmid and Altig (1999: 27, 32 [fig. 3.3E], 107, 113, 299 [fig. 12.1G]); Van Sluys et al. (2000: 148); Bergallo et al. (2000b: 149); Caramaschi et al. (2000: 75, 76, 78 [table 1]); Izecksohn and Carvalho-e-Silva (2001: 88, 146 [index]); Carvalho-e-Silva and Peixoto (2004: e. T21817A9322082 [IUCN Red List Website]); Giaretta and Facure (2004: 8); Paglia et al. (2004: table 2); Rocha et al. (2004: 8); Young et al. (2004: 68 [appendix 3]); Eterovick et al. (2005: 168, 173, 179 [appendix]); Haddad and Prado (2005: 215); Pimenta et al. (2005: supporting online material table S3); Silvano and Segalla (2005: 654, 655 [table 1]); Úbeda and Nuñez (2006: 441, 444 [references]); Cruz and Feio (2007: 123); Gasparini et al. (2007: 76–77, 80 [table 6.1], 82 [acknowledgments], 86 [picture]); Gherardi and Cabral (2007: 111 [table 7.2]); Passamani and Mendes (2007: 132 [annex 1]); Wells (2007: 355 [table 8.1], 359, 519 [table 11.1], 1144 [index]); DOE-SP (2008: 9); Feio (2008: 317–318); ICMBio (2008b: 500 [index], 501 [index]); ICMBio (2008a: 290 [table 2], 291 [table 3], 315–318, 896–897); Rossa-Feres et al. (2008: 86); Stuart et al. (2008: 102); Altig et al. (2009: 129); Araújo et al. (2009: 200 [table 1], 208); Garcia et al. (2009: 334 [table 3]; 633 [annex 3]); Paglia and Fonseca (2009: 3575 [table 5]); Rocha et al. (2009: 119 [annex 9.1]); Silva (2009: 2 [chart and figure]); Tanizaki-Fonseca et al. (2009: 281); Van Sluys et al. (2009: 176, 181, 182 [references]); DOE-SP (2010: 7); Izecksohn and Carvalho-e-Silva (2010: 90, 148 [index]); Almeida et al. (2011: 544, 548 [table 2], 560 [specimens examined]); Nascimento and Campos (2011: 169, 173, 212); Rossa-Feres et al. (2011: 51 [table 1]); Morais et al. (2012: 2633 [abstract], 2635, 2637 [table 1], 2638); Trindade-Filho et al. (2012: supplementary material table S1); Acton (2013: 95); Lopes et al. (2013: 27); DOU (2014: 124 [annex 1]); Segalla et al. (2014: 40); DOU (2015: 149); Valencia-Aguilar et al. (2015: 2 [table S1, supplemental]); Gan et al. (2016: 46); Garey and Provete (2016: 234–235, 237 [table 2], 240); Nunes-de-Almeida et al. (2016: 1 [abstract], 2, 3 [table 1 and figure 1], 4 [text and table 2], 5, 6 [figure 2C], 7 [text and figure 3], 8 [text and table 3], 9; supporting information); Pereyra et al. (2016: supplementary information); Schulte and Rödder (2016: 256 [appendix]); Segalla et al. (2016: 37); Rossa-Feres et al. (2017: 268 [table 1]); Dorigo et al. (2018: 3 [table 1], 7); Haddad et al. (2018: 55–56, 128 [index]); ICMBio (2018b: 202); Luna et al. (2018: 417 [figure 11A], supplementary information); Sabbag et al. (2018: 141, 143 [figure 1], 144, 147 [figure 3]); Ferreira et al. (2019a: 261–262); Ferreira et al. (2019b: 143 [table 1], 154, 162 [appendix 1]); Fraga et al. (2019: 375 [table 16.3]); Jorgewich-Cohen et al. (2019: 64, 67 [table 1]); Moura et al. (2019: 397, 400); RAN (2019: third page [table]); Segalla et al. (2019: 74); Vasconcelos et al. (2019: 44 [table 2.1]); Verdade et al. (2019: 171, 173 [references]); Carvalho-e-Silva et al. (2020: 3 [table 1], 7, 8 [figure 5], supplementary material); Cholak et al. (2020: 1); Colaço et al. (2020: 20, 25 [appendix B]); Guerra et al. (2020: supplementary material S1); Lopes et al. (2020: 3291 [table 1], 3293, 3293 [figure 1]); Assis et al. (2021: 505–506, 507 [text and table 1], 509, 514, 515 [tables 2 and 3], 516, 517 [table 4], 518 [figures 8 and 9], 519 [figure 10], 522); Dias et al. (2021: 1299 [text and table 1], 1301, 1301 [table 2], 1304, 1305 [figures 4 and 5], 1306 [figure 7], 1307 [figure 8], 1309, 1316, supporting information); Galetti et al. (2021: 308); Lisboa et al. (2021: 279); Segalla et al. (2021: 149 [table 1]); Straube et al. (2021: 4 [table 1]); Colaço and da Silva (2022: 296, 313); DOU (2022b: 94 [annex 2]); DOU (2022a: 71); DOE-ES (2022: 6 [annex I]); Lavilla et al. (2022: 215); Sabbag et al. (2022b: 2); Sabbag et al. (2022a: 1 [abstract], 2, 2 [figure 1], 3–8, supplementary material); IUCN and Instituto Boitatá (2023: cover); Toledo et al. (2023: lines 80 and 81 [table in supplemental material]); Colaço et al. (2024: 70); Sabbag et al. (2024: 321).

  • Lectotype: Adult male (AMNH A32976) collected in the municipality of Petrópolis, Rio de Janeiro state, Brazil (“Urwäldern von Petropolis”), by Friedrich Ohaus in 1906 (fig. 4).

  • Topotypic paralectotypes: One extant tadpole (AMNH A193770) collected with the lectotype (fig. 4). Another four adult specimens (three males and one female), five larvae, and two egg clutches (MTKD D 2037), collected in the municipality of Petrópolis, Rio de Janeiro state, Brazil by Friedrich Ohaus in 1906, were all destroyed in the Dresden bombing in World War II, on 13 February 1945 (Obst, 1977).

  • General physical state of the extant type specimens: Both specimens are well fixed and in very good condition considering they were collected and fixed more than 115 years ago. However, their skin has lost most of its pigmentation and is translucent, with the color pattern barely detectable on the dorsum, lateral head, flank, and dorsal surfaces of the limbs of the lectotype (AMNH A32976). The lectotype (AMNH A32976) bears a tag tied around the groin and a narrow sagittal incision through the ventral skin and muscles from the medial gula to the posterior abdomen. Its hands contact the throat, the fingers are not splayed or straight, but the nuptial pad is visible, and its PEPs can be counted (see below). The legs and feet of the adult are folded in articulations but not too close to the body. The toes are not splayed or straight. The untagged tadpole (topotypic paralectotype AMNH A193770) is in stage 27 or 28 (tadpole staging sensu Gosner, 1960). The tail is curved, and both the abdominal flap and final part of ventral fin have a small dextral incision.

  • Lectotype measurements (mm): SVL 18.6; head length 6.7; head width 6.8; tympanum diameter 1.3; eye diameter 2.7; interorbital distance 1.5; internarial distance 1.6; eye to nostril distance 1.8; eye to snout distance 2.8; forearm diameter 1.9; arm diameter 1.7; hand length 5.7; femur length 10.6; tibia length 10.7; foot length 9.7.

  • Topotypic paralectotype measurements (mm): Total length 19.9; body length 6.3; tail length 13.6; body width 3.7; body height 2.3; maximum tail height 1.6; nostril to snout distance 1.8; eye to snout distance 1.8; interorbital distance 1.5; eye to nostril distance 0.7; oral disc width 1.4; eye diameter 0.8.

  • Diagnosis: Thoropa petropolitana is diagnosed from its congeners by the following combination of characteristics. Adults: (1) small size (SVL males 14.2–22.9 mm, N= 191; females 19.3–26.4 mm, N = 14); (2) males with paired, elongate, curved vocal slits; and (3) vocal sac paired, subgular; (4) females on average larger than males; (5) spine-shaped PEPs generally restricted to finger II, dorsal to the articulation between the proximal phalanx and metacarpus (metacarpal-phalangeal articulation); (6) supernumerary tubercles on hand absent; (7) fingers II<III; (8) finger V surpassing penultimate articulation of finger IV; (9) advertisement call composed of one note. Tadpoles: (10) abdominal flap large with deeply bilobate posterior margin; (11) ventral fin forming medial groove posteriorly; (12) vent tube attached to ventral fin; (13) spiracle orifice ventral to abdominal flap (contra Dias et al., 2021); (14) dorsal color pattern of tail forming series of pale diamonds.

  • Comparison within the Thoropa petropolitana group: Thoropa petropolitana is smaller than the other species of the group, with males SVL 14.2–22.9 mm, and females SVL 19.3–26.4 mm (in T. bryomantis, male SVL 20.6–23.8 mm and female SVL 24.1–26.1 mm; in T. lutzi, male SVL 22.4–27.3 mm); table 1; supplementary appendix SA1). Thoropa petropolitana has a paired vocal sac (T. lutzi and T. bryomantis have single and subgular vocal sac; Assis et al., 2021; this study). Thoropa petropolitana has spine-shaped PEPs (T. lutzi and T. bryomantis have cone-shaped PEPs; Assis et al., 2021; Luna et al., 2018). In T. petropolitana, PEPs are generally restricted to the dorsal surface of the metacarpal-phalangeal articulation of finger II (T. lutzi and T. bryomantis have PEPs on finger II and inner metacarpal tubercle; Assis et al., 2021). In T. petropolitana, finger V surpasses the penultimate articulation of finger IV (usually not surpassing in T. lutzi and T. bryomantis). Thoropa petropolitana has fingertips slightly dilated (dilated in T. lutzi and T. bryomantis; this study; Assis et al., 2021; Cocroft and Heyer, 1988). The advertisement call of T. petropolitana is pulsatile (nonpulsatile in T. lutzi and T. bryomantis Nunes-de-Almeida et al., 2016). In tadpoles of T. petropolitana, the medial groove of the ventral fin starts in the posterior part of the tail (starts in the anterior half of the tail in T. lutzi; unknown in T. bryomantis) and the vent tube is attached to the ventral fin (ventral fin and to the abdominal flap in T. lutzi, Dias et al., 2021; unknown in T. bryomantis).

  • Comparison with the Thoropa miliaris group: As stated above, Thoropa petropolitana is on average smaller than other species of the genus, with males SVL 14.2–22.9 mm, and females SVL 19.3–26.4 mm (in the T. miliaris group, male SVL 22.0–101.7 mm, female SVL 26.0–73.8 mm; table 1; supplementary appendix SA1). Additionally, females are, on average, larger than males in T. petropolitana (not in the T. miliaris group; table 1). Vocal slits and vocal sac are present in T. petropolitana (absent in the T. miliaris group; Assis et al., 2021; this study). PEPs are generally restricted to the dorsal metacarpal–phalangeal articulation of finger II in T. petropolitana (finger II, inner metacarpal tubercle, and fingers III and IV in the T. miliaris group; Sabbag et al., 2022a). Supernumerary tubercles on the hands are absent in Thoropa petropolitana (present in the T. miliaris group). Fingertips are weakly dilated in T. petropolitana (dilated in T. miliaris group; this study; Cocroft and Heyer, 1988). The advertisement call of T. petropolitana is composed of a single note (more than one note in the T. miliaris group; Nunes-de-Almeida et al., 2016). In tadpoles of T. petropolitana, the medial groove of the ventral fin arises in the posterior portion of the tail (medial groove extending along entire length of tail in the T. miliaris group) and the abdominal flap is continuous and large, both posteriorly and laterally (poorly developed and discontinuous in T. megatympanum and T. miliaris; this study; Colaço and da Silva, 2022; Dias et al., 2021) and posteriorly bilobate in T. petropolitana (posteriorly rounded in T. taophora and T. saxatilis; Dias et al., 2021; this study). The spiracle opening is ventral to the abdominal flap in T. petropolitana (spiracle opening dorsal to the abdominal flap or at midline of lateral body in the T. miliaris group). The vent tube is attached to the ventral fin in T. petropolitana (free in T. miliaris, attached to the ventral fin and abdominal flap in T. taophora; Dias et al., 2021). In T. petropolitana, finger II is shorter than finger III (finger II longer than finger III in T. miliaris, T. megatympanum, and T. taophora) and finger V surpasses the penultimate articulation of finger IV (finger V not surpassing the penultimate articulation of finger IV in T. megatympanum and T. saxatilis).

  • Lectotype description: Body small relative to other Thoropa spp.; head as wide as long (head length 4.7% of SVL); snout acuminate in dorsal and lateral views; nares lateral, located close to tip of snout; internarial distance 12.2% of interorbital distance; canthus rostralis concave; loreal region slightly concave, sloping slightly outward to lip; posterior margin of eye and anterior margin of tympanic ring separated; pupillary meniscus not visible; palpebral membrane lacking reticulation or other pigmentation; eye diameter 44.8% of interorbital distance; tympanum visible, subcircular; tympanic ring conspicuous; supratympanic fold visible, surrounding tympanum from posterior margin of eye to anterior edge of arm insertion; tongue oval, attached anteriorly and laterally, free posteriorly; dentigerous process of vomer transverse, discontinuous, positioned between choanae; choanae wide, elliptic, widely separated; vocal slits present; vocal sac paired, subgular. Discoidal fold evident in ventral view. Mandibular symphysis fitting into single premaxillary fossa.

  • Arm slender, diameter of upper arm and forearm similar; fingers long, slender, tips weakly dilated; fingers in the following length order: II<III<V<IV or II<II ≈ V<IV; finger webbing absent; subarticular tubercles single, rounded, weak; supernumerary tubercles absent; inner and outer metacarpal tubercles ovoid; PEPs restricted to dorsal surface of finger II above articulation between proximal phalanx and metacarpus, 12 on right hand, 11 on left, dark brown to black at tips, lighter shades of brown toward base.

  • Leg long, slender; tibia length 55.9% of SVL; toes long, slender, tips weakly dilated; toes in the following length order: I<II<V<III< IV; toe webbing absent; supernumerary tubercles absent; subarticular tubercles simple and rounded, weak; outer metatarsal tubercle round.

  • Dorsum weakly asperous sagittally, increasingly asperous laterally; dorsal surface of eyelid asperous; dorsal surfaces of members weakly asperous; flank with scattered, inconspicuous, warty macroglands; ventral surfaces smooth.

  • Coloration in life: Information on the coloration of the lectotype in life is unavailable, so the description here is based on other specimens and the literature. The coloration of the type series in life was described by Wandolleck (1907), as follows (freely translated from the German): ground color of the dorsal part of the body dark gray-blue in juveniles, lighter on the flanks toward the central region of the dorsal part of the body and marbled with yellow-gray in the older specimens; wide stripe crossing horizontally the head over the eyes, connected to a longitudinal strip extending toward the middle of the dorsum; upper lip with four oblique, light stripes extending from the eyes; tympanum yellow-gray with the same marbled and spotted shading of the flanks of the body; the dorsal surface of the extremities of the members alternates between gray-yellow and blue-gray, except on the phalanges; ventral part of the body yellow-white with scattered irregular brown and might exist in the pectoral girdle, in laterals and more frequently in the thigh. Additionally, Bokermann (1965) also reported that live specimens present poorly defined dark blotches on a green background.

  • A photograph by Eugênio Izecksohn of a live specimen (fig. 6) published by Silva (2009) and Nunes-de-Almeida et al. (2016), probably corresponding to EI 9474 (collected 21 October, 1977, in Parque Nacional da Serra dos Órgãos, Rio de Janeiro state), shows the dorsum to be light brown-yellow with scattered irregular gray-brown spots; the snout is brown, slightly darker than the dorsum; the eyelid is whitish; between the eyelids there is a light transverse stripe delimiting the base of a large dark brown, triangular blotch extending from the middle of the dorsal region where two dark brown blotches bifurcate laterally, leaving between them a whitish region; the supratympanic fold is brown, slightly darker than the dorsum; a large, dark brown blotch occurs on the posterior third of the dorsum; the members possess well-defined, dark brown, transverse stripes.

  • Coloration in preservative: The background is light yellow with a large, triangular, light-brown blotch between the eyelids that bifurcates to form two oblique stripes extending posteriad to the midlevel of the dorsum; the eyelid is whitish and the supratympanic fold is light brown. The botch on the posterior third of the dorsum is light brown, as are the transverse strips on the members. All the ventral surfaces are whitish. See supplementary appendix SA2, available online ( https://doi.org/10.5531/sd.sp.72), for photographs of some fixed specimens.

  • Variation: SVL varies between 14.2 and 22.9 mm (N = 191) in males and 19.3 and 26.4 mm (N = 14) in females (table 2, supplementary appendix SA1). Adult males possess vocal slits and paired subgular vocal sac, probably separated by the m. geniohyoideus (figs. 5A–C; Elias-Costa et al., 2021).

  • The relative lengths of fingers and toes is somewhat variable among specimens. Specifically, finger II can be shorter than or approximately equal to finger V, and toe V can be shorter than or approximately equal to toe III. In most specimens, the subarticular tubercles are inconspicuous. Nevertheless, topical application of Lugol's solution (Bock and Shear, 1972) reveals them to be present beneath all finger and toe articulations. Similarly, in some specimens the metacarpal and the inner metatarsal tubercles are inconspicuous but are revealed to be present by Lugol's solution.

  • Among adult males, PEPs vary slightly in size, position, shape, and extent of keratinization of the stratum corneum (Sabbag et al., 2022a). Indeed, in seven specimens the PEPs are completely white on one of the hands (e.g., MNRJ 24152 and EI 9483; supplementary appendix SA1). In others, PEPs are brown, with their borders being light brown (fig. 5D). Some males also exhibit PEPs in other regions of the hand beyond the metacarpal-phalangeal articulation. For example, USNM 208609 also possesses one PEP on the terminal phalanx of finger II of the right hand, whereas USNM 208610 has two PEPs on the terminal phalanx of finger II of the right hand, one on the terminal phalanx of finger II of the left hand, and one on each inner metacarpal tubercle of both hands (supplementary appendix SA1). The number of PEPs is 0–21 on the right hand and 4–17 on the left (this study; Sabbag et al., 2022a). Some specimens can possess higher numbers of PEPs, because unkeratinized (white) PEPs are difficult to individualize and count.

  • Tadpoles (table 3, supplementary appendix SA1): Dias et al. (2021) and Colaço and da Silva (2022) described the anatomical characteristics of many Cycloramphidae species, including T. petropolitana. Our observations agree with their accounts, with the exception that the spiracular orifice is ventral to the abdominal flap and not dorsal, as reported by Dias et al. (2021). We highlight that T. petropolitana tadpoles present a well-developed, posteriorly deeply bilobate abdominal flap and a sinistral, tubular, lateral spiracle that is directed posterodorsad, lacks an inner wall, and is open ventrally to the abdominal flap. Also, the medial groove of the ventral fin starts in the posterior part of the tail, and the vent tube is attached to the ventral fin (Dias et al., 2021).

  • Natural history: The first information about the natural history of Thoropa petropolitana was provided in Wandolleck's (1907) description as the transcription of a personal communication from the collector Friedrich Ohaus. According to Ohaus, the species inhabits granitic walls with fast-running water where it feeds on insects; the egg clutches are large and attached to protruding parts of rocks or placed amidst mosses and lichens where they maintain contact with the water; the tadpoles also inhabit rock walls and present a “suctorial disc” on the base of the tail and a “suctorial pad” on the abdomen, which they use to slip over the rocks and move quickly in the flowing water, showing the ability to return to the water; they are camouflaged with the rocks (Wandolleck, 1907).

  • Bokermann (1965) reported that amplexus was not observed and that the green background of dorsum seems to enable camouflage with algae and slime on the rocks. Bokermann (1965) also reported that—unlike Thoropa miliaris—males are not territorial and call with many other males.

  • Heyer and Crombie (1979) described the sequence of the reproductive behavior, embryo development in the eggs, predation, and territoriality, including some comparisons with Thoropa miliaris. They mention axillary amplexus, a small number of eggs (16), male territoriality, and male clutch attendance. Cocroft and Heyer (1988) commented about territoriality of the genus, drawing attention, among other things, for dorsal scratches in T. miliaris probably due to male-male combat using PEPs, but they could not find scratches in T. petropolitana.

  • Advertisement call: According to Friedrich Ohaus, Thoropa petropolitana calls like a “small parrot” (Wandolleck, 1907). Bokermann (1965) described the advertisement call as a single, short, uniform note with energy concentrated between ca. 1500 and 4500 Hz and a duration of less than 0.1 s, sounding like a click repeated at irregular intervals of 5–10 s or more (Bokermann, 1965). Lutz (1954) also described the call as a click. Recently, Nunes-de-Almeida et al. (2016) redescribed the advertisement call of T. petropolitana on the basis of the same recording used by Bokermann (1965). Nunes-de-Almeida et al. (2016) defined the call as “simple” (i.e., composed of a single note) and repeated at irregular intervals (mean intercall interval 14.64–31.54 s); the mean duration is 36 ms; calls have a mean of 132.33 pulses; pulses have a mean duration of 3 ms and are grouped into pseudopulses composed of, on average, 11.17 pulses [sic; pseudopulses?]; the mean dominant frequency is 3.81 kHz; and calls have three frequency bands with no frequency modulation.

  • Geographic distribution: Confirmed records of Thoropa petropolitana are restricted to the montane region of southern Rio de Janeiro state and three disjunct populations: a population in Tijuca in Rio de Janeiro municipality, a northern population in Espírito Santo and a southern population in São Paulo (fig. 7; for comments see Discussion).

  • TABLE 1.

    Snout-vent length range of species of Thoropa, separated by group (T. petropolitana group and T. miliaris group), for adult females and adult males, with respective ranges of measurements (minimum and maximum) and sample size. Measurements are given in millimeters (mm).

    img-z13-2_01.gif

    TABLE 2.

    Measurements of adult male, adult female, and undetermined adult of Thoropa petropolitana, with respective ranges of measurements (minimum and maximum) and sample size. Measurements are given in millimeters (mm).

    img-z14-2_01.gif

    TABLE 3.

    Measurements of tadpoles of Thoropa petropolitana, with respective ranges of measurements (minimum and maximum) and sample size. Measurements are given in millimeters (mm).

    img-z15-2_01.gif

    FIG. 3.

    The holotype of Eupsophus fuliginosus (NHMW 15847). Image provided by the Wien Natural History Museum. A, dorsal view. B, ventral view. C, ventral foot detail. D, dorsal hand detail.

    img-z16-1_01.jpg

    FIG. 4.

    Syntypes of Hylodes petropolitanus at AMNH. Lectotype AMNH A32976: A, dorsal view; B, ventral view; C, lateral view. Paralectotype AMNH A193770: D, dorsal view; E, ventral view; F, lateral view. White bars indicate 1 cm.

    img-z17-1_01.jpg

    FIG. 5.

    Morphological details of Thoropa petropolitana. Adult male EI 2586: A, ventral view of head (red arrows indicate vocal sacs); B, view inside buccal cavity (red arrows indicate vocal slits); C, ventral view of head stained with Lugol (red arrows indicate vocal sacs). Adult male EI 9476: D, dorsal view of metacarpal-phalangeal articulation of finger II showing brown PEPs. Scale bars = 1 cm.

    img-z19-1_01.jpg

    FIG. 6.

    Only known photograph of Thoropa petropolitana in life. Specimen EI 9474, collected in Alto Soberbo, Rodovia Rio–Teresópolis, Magé, Rio de Janeiro state, September 14, 1977, by C.A.G. Cruz, O.L. Peixoto, E. Izecksohn, and S.P. Carvalho-e-Silva. Photograph of Eugênio Izecksohn. Photograph published by Silva (2009) and Nunes-de-Almeida et al. (2016).

    img-z20-1_01.jpg

    FIG. 7.

    Distribution map of Thoropa petropolitana (Wandolleck, 1907). We obtained geographical coordinates from Google Earth® v.7.3.4 (Google) and centroid coordinates from ArcGIS v.10.1 (ESRI, 2012). The type locality is represented by a circle. The locality of the specimens purportedly from “Rio Juruá” (municipality of Eurinepé, Amazon state) is not included. Elevation is represented in shades of gray varying increasing in 50 m increments from sea level (white). SP, MG, RJ, ES indicate Brazilian states, respectively: São Paulo, Minas Gerais, Rio de Janeiro, and Espírito Santo.

    img-z22-1_01.jpg

    DISCUSSION

    Thoropa petropolitana males and females differ in SVL and the presence of vocal sacs, vocal slits, and PEPs in males. Females are, on average, larger than males (Bokermann, 1965; Cocroft and Heyer, 1988; Feio, 2002), presenting a mean SVL of 23.0 mm, while males present a mean SVL of 19.4 mm (table 2).

    Cocroft and Heyer (1988) proposed an identification key with some characteristics of Thoropa petropolitana, most of them in agreement with our study. For the adults, they noted the presence of “finger disks not or only slightly expanded” (confirmed by us); “posterior surface of thigh uniform brown with light flecks or light and dark brown mottle, dorsum mottled with light and dark brown” (confirmed); tympanum 60%–70% the size of the eyes (similar to our results: table 2); tympanic ring and supratympanic fold low and indistinct (not confirmed: they are distinct, albeit less conspicuous than in T. miliaris); finger III longer than finger II (as our observations, and also pointed by Heyer, 1999); and males with a single PEPs cluster in finger II (confirmed). Additionally, although some authors have reported basal toe webbing (Cochran, 1955; Cocroft and Heyer, 1988), close inspection reveals that the apparent webbing is just folded skin at the base of toes.

    Although Thoropa petropolitana closely resembles other species of the T. petropolitana group, it resembles the T. miliaris group in PEP size, shape, pattern, and presence of PEPs above the metacarpal-phalangeal articulation (Sabbag et al., 2022a). Assuming that the T. petropolitana group is monophyletic, it is unknown if this resemblance owes to plesiomorphy or homoplasy.

    The accumulation of information on the reproductive behavior of the Thoropa petropolitana group has been somewhat convoluted. Both Thoropa lutzi and T. petropolitana were initially considered to have nonterritorial males (Bokermann, 1965), but it was later shown that male T. petropolitana are solitary and defend their territories (Heyer and Crombie, 1979); information on reproductive behavior is still lacking for T. bryomantis. Similarly, although Cochran (1955) mentioned the occurrence of paired vocal sacs, Nunes-de-Almeida et al. (2016) claimed that T. petropolitana lacks vocal sacs. Assis et al. (2021) clarified that T. bryomantis and T. lutzi possess vocal slits and a single subgular vocal sac, and we also observed vocal slits and a paired subgular vocal sac in T. petropolitana, contra Nunes-de-Almeida et al. (2016).

    As noted above, confirmed records of Thoropa petropolitana are from the mountainous region of southern Rio de Janeiro state, the municipality of Rio de Janeiro, and the states of Espírito Santo and São Paulo. The records from the municipality of Rio de Janeiro are all from what is today Parque Nacional da Tijuca. Feio (2002) reported MZUSP 86581 and MZUSP 88241–88252, but none of these specimens could be located. Among the specimens cited by Feio (2002) in the Museu Nacional (AL-MN 413–414, 555–559, and 872), only AL-MN 556–559 and 872 (two adult males and three probable adult females) were located, all of which correspond morphologically to T. petropolitana.

    The Espírito Santo records are based on 14 specimens of Thoropa petropolitana collected in Santa Teresa, five of which are housed in the California Academy of Sciences (CAS-SUA 11731–11735) and the other nine in Museu de Zoologia da Universidade de São Paulo (MZUSP 27718, 27723, 27725–27729, 27732–27733). The CAS specimens were recorded as having been collected at the Estação Biológica do Museu Nacional (currently Estação Biológica de Santa Lúcia) by Augusto Ruschi on 24–27 December 1942. Among these five specimens, we examined three (a juvenile and two probable adult females), all of which correspond morphologically to T. petropolitana. Similarly, the nine MZUSP specimens—collected at “Santa Teresa, ES” (no additional information available) during a MZUSP expedition on 1–4 April 1969—also correspond morphologically to T. petropolitana. Although these localities in Espírito Santo lie more than 350 km northeast of the localities in Rio de Janeiro, the fact that the specimens were collected more than 20 years apart by different researchers and deposited in different collections leads us to conclude that they are not labeling errors. Subsequent expeditions in Santa Teresa have failed to detect this species (Ferreira et al., 2019b).

    Similarly, the São Paulo locality also appears to be legitimate. The three specimens (AL-MN 3578, MNRJ 14607–14608, all females or juvenile males) correspond morphologically to T. petropolitana and were collected by Alphonse Hoge and Bertha Lutz on 17 December, 1959, in “São Paulo,” which was restricted by Bokermann (1966a) to either Alto da Serra de Cubatão (Paranapiacaba, Santo André municipality, São Paulo state), more than 300 km southwest of the main distribution of T. petropolitana in Rio de Janeiro. We are unaware of any additional records of T. petropolitana in this region, which is striking given the intense collecting in the area over the past five decades or more (e.g., Cocroft and Heyer, 1988). However, we are also unaware of any independent evidence suggesting this record to be erroneous and instead suggest these specimens might represent a population that declined and disappeared, as has been documented for many other amphibian populations in this region (Heyer et al., 1988; Toledo et al., 2023; Verdade et al., 2009, 2012).

    In addition to the above localities that appear to be correct, several others merit special consideration. First, MZUSP 1489 (adult female with oocytes), MZUSP 1490 (juvenile female), and MZUSP 1491 (adult male) were cataloged as having been collected in Amazonia by Ernest Garbe in December 1901 during and expedition to the Rio Juruá. These specimens were analyzed by Bokermann (1965) and we agree with him that they are T. petropolitana; however, the disjunct locality in Amazonas state appears to be incorrect. Ernest Garbe was hired as a naturalist by the Museu Paulista, São Paulo, Brazil (currently MZUSP) on 2 January 1902 through a power of attorney since he was already on an expedition on the Juruá River, Amazonas state, Brazil (Pinto, 1945), far away from São Paulo. According to a personal communication from Walter Garbe (Ernest Garbe's son) to Olivério Pinto (Pinto, 1945), in November 1900 he and his father traveled to Petrópolis municipality (Rio de Janeiro state) to prepare for their expedition to the Juruá River, leaving Petrópolis directly to the Juruá River and regressing to São Paulo. While in Petrópolis, Ernest Garbe and his son collected some specimens of hummingbirds, as documented in the records of MZUSP Ornithology Collection (Pinto, 1945), and it seems that the record of T. petropolitana from the Rio Juruá is due to a labeling error (as indicated by Bokermann, 1965) and the specimens were actually collected in Petrópolis, Rio de Janeiro state, in November 1900.

    For decades, Thoropa petropolitana was abundant in the Serra dos Órgãos, as evidenced by extensive series in museums. For example, MZUSP possesses lots of 50 specimens (collected in 1963), 137 specimens (also 1963), 49 specimens (1964), 77 specimens (also 1964) and a collection in collaboration with the USNM (in 1977) comprising 62 specimens divided between the two museums. As far as we know, T. petropolitana was last observed in nature in March 1982 when it was collected by Adriano Lúcio Peracchi and Eugênio Izecksohn in Parque Nacional da Serra dos Órgãos, Magé, Rio de Janeiro, and deposited in the Brazilian National Museum (Museu Nacional, MNRJ 61403–61404). Toledo et al. (2023) published that the last collection was in 1984 (MNRJ 26006), but we identified this specimen as T. miliaris. By the end of 1980s, T. petropolitana populations had already disappeared (Heyer et al., 1988), and neither specimens nor environmental DNA have been detected since (Lopes et al., 2020). Since 1982, many herpetologists have searched for this species in appropriate habitats (wet rocky outcrops and waterfalls; for details, see Toledo et al., 2023). We also searched for T. petropolitana in Parque Nacional da Serra dos Órgãos and the region of Petrópolis and Teresópolis (both in Rio de Janeiro state) between 2015 and 2019 but failed in all attempts. Currently, T. petropolitana is classified as “critically endangered” and “possibly extinct” (DOU, 2022a; IUCN and Instituto Boitatá, 2023).

    ACKNOWLEDGMENTS

    We are grateful to David A. Kizirian and Lauren Vonnahme (AMNH) for providing photographs, historical information, and measurements for the syntypes of Hylodes patropolitanus at AMNH, as well as copies of correspondence between G.K. Noble and the Dresden Museum and authorization to publish one of the letters. We also thank Markus Auer and Raffael Ernst for providing information from specimen catalog of the Senckenberg Naturhistorische Sammlungen, Museum für Tierkunde, Dresden, Germany, and U. Fritz (Museum für Tierkunde, Dresden, Germany) for information about the Dresden castle. We thank E.O. Lavilla, A. Bauer, and J. Faivovich for taxonomic considerations on Eupsophus fuliginosus. We thank M. Solé (MZUESC) for German translating and interpret-ting B. Wandolleck's description; T.R. Carvalho for bioacoustics considerations; M.W. Cardoso, P.H.M.S. Pinna, and J.P. Pombal, Jr. (MNRJ and AL-MN) for information on MNRJ specimens; M.T.C. Thomé, D.C. Rossa-Feres, F.R. do Amaral, C.S. Cassini, J.P. Pombal, Jr., C.M. Lopes, L.A. Fusinatto, B.v.M. Berneck, and A.C.C. Lourenço for suggestions to improve the study and manuscript; and I.F. Machado for help with conservation literature. We thank the following curators and collection managers for authorizing and facilitating access to material: M.W. Cardoso, P.H.M.S. Pinna, and J.P. Pombal, Jr. (MNRJ and AL-MN); N.C. Pupin (CFBH); A.S. Benetti (MZUSP); L.B. Nascimento (MCNAM); A. Mollo Neto, J. Lima, and M.T. Rodrigues (MTR, IB, USP); B. Teixeira and V.G.D. Orrico (MZUESC); C. Assis (MZUFV); I.C.C. Marques and P.G.A. Garcia (UFMG); H.R. da Silva (UFRRJ and EI); K.R.E. Gomes, A.D. da Silva, and L.F. Toledo (ZUEC); S.P. de Carvalho-e-Silva and M.R. Gomes (ZUFRJ); S.J. Castroviejo-Fisher and G.M.F. Pontes (MCP); C.B. Ferreira and D.C. Rossa-Feres (DZSJRP); J.P. Silva and F. Lirio (MBML); A.A. Giaretta and T.R. de Carvalho (AAG-UFU); R. McDiarmid, R. Bell, K .Tighe, R. Wilson, A. Wynn, C.K. Sami, E. Langan, and S. Gotte (USNM); D. Kizirian, D. Dickey, and L. Vonnahme (AMNH); L. Scheinberg (CAS); K. Martin, and S.P. Rogers (CMNH); A. Resetar (FMNH); R. Brown, R.E. Glor, and L. Welton (KUMNH); J. Rosado (MCZ); J.A. McGuire and C.L. Spencer (UC); J.A. Campbell and C.J. Franklin (TNHC); D. Rabosky and G. Schneider (UM-LSA); P. Semal and O.S.G. Pauwels (IRSNB); A. Ohler (MNHN); G. Gassner and S. Schweiger (NMW); D.K. Johansson (ZMUC); M.R.S. Pires and P.S. Barbosa (UFOP); M.B. Martins and D.J. Alvares (UFRGS); M.F. Napoli (UFBA); A.M.P.T. de Carvalho-e-Silva (UNIRIO); and Y. Schaarschmidt and M. Vamberger (SNSD). Finally, we thank A. Bauer and J. Faivovich for their essential suggestions and corrections that greatly improved the manuscript. Funding for this research was provided by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 141454/2015-6, 304713/2023-6, 408901/2021-7, 314480/2021-8) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2012/25370-2, 2013/50741-7, 2018/15425-0, 2021/10639-5, 2021/12455-9). Collection permits related to this study were providded by Ministério do Meio Ambiente–Instituto Chico Mendes de Conservação da Biodiversidade–Sistema de Autorização e Informação em Biodiversidade (30181-1, 50280-1, 55031-1).

    Copyright © American Museum of Natural History 2025

    REFERENCES

    1.

    Acton, Q.A. (editor). 2013. Issues in global environment – biodiversity, resources, and conservation. Atlanta: Scholarly Editions. Google Scholar

    2.

    Almeida, A.P., J.L. Gasparini, and P.L.V. Peloso. 2011. Frogs of the state of Espírito Santo, southeastern Brazil – the need for looking at the ‘coldsposts.’ Check List 7: 542–560. Google Scholar

    3.

    Altig, R., and G.F. Johnston. 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3: 81–109. Google Scholar

    4.

    Altig, R., A. Lathrop, and R.W. Murphy. 2009. Morphology of southeast asian tadpoles: Hoplobatrachus chinensis (Dicroglossidae), Leptolalax pelodytoides (Megophryidae), and other megophryids. Russian Journal of Herpetology 16: 126–130. Google Scholar

    5.

    Araújo, O.G.S., L.F. Toledo, P.C.A. Garcia, and C.F.B. Haddad. 2009. The amphibians of São Paulo State, Brazil amphibians of São Paulo. Biota Neotropica 9: 197–209. Google Scholar

    6.

    Assis, C.L. et al. 2021. A new species of Thoropa Cope, 1865 (Anura, Cycloramphidae) from the Serra da Mantiqueira, southeast Brazil. Zootaxa 4995: 5055–5022. Google Scholar

    7.

    Baumann, F. 1912. Brasilianische Batrachier des Berner Naturhistorischen Museums nebst Untersuchenugen über die geographische Verbreitung der Batrachier in Brasilien. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere 33: 87–172. Google Scholar

    8.

    Benchimol, J.L., and M.R. Sá (editors). 2007. Outros estudos em zoologia. Rio de Janeiro: Editora Fiocruz. Google Scholar

    9.

    Bergallo, H.G., C.F.D. Rocha, M. Van Sluys, and M.A.S. Alves. 1999. A fauna ameaçada do estado do Rio de Janeiro. Ciência Hoje 26: 19–23. Google Scholar

    10.

    Bergallo, H.G., C.F.D. Rocha, M.A.S. Alves, and M. Van Sluys. 2000a. A fauna ameaçada de extinção do Estado do Rio de Janeiro. Rio de Janeiro: Editora Universidade do Estado do Rio de Janeiro. Google Scholar

    11.

    Bergallo, H.G., C.F.D. Rocha, M. Van Sluys, and M.A.S. Alves. 2000b. O status atual da fauna do Estado do Rio de Janeiro: considerações finais. In H.G. Bergallo, C.F.D. Rocha, M.A.S. Alves, and M. Van Sluys (editors), A fauna ameaçada de extinção do estado do Rio de Janeiro, 1st ed.: 145–150. Rio de Janeiro: EdUERJ. Google Scholar

    12.

    Bock, W.J., and C.R. Shear. 1972. A staining method for gross dissection of vertebrate muscles. Anatomischer Anzeiger 130: 222–227. Google Scholar

    13.

    Bokermann, W.C.A. 1965. Notas sôbre as espécies de Thoropa Fitzinger (Amphibia, Leptodactylidae). Anais da Academia Brasileira de Ciências 37: 525–537. Google Scholar

    14.

    Bokermann, W.C.A. 1966a. Lista anotada das localidades tipo de anfíbios brasileiros. São Paulo: Serviço de Documentação - RUSP. Google Scholar

    15.

    Bokermann, W.C.A. 1966b. Notas sôbre três espécies de “Physalaemus” de Maracás, Bahia (Amphibia, Leptodactylidae). Revista Brasileira de Biologia 26: 253–259. Google Scholar

    16.

    Boulenger, G.A. 1909. Reptilia and Batrachia. London: Taylor and Francis. Google Scholar

    17.

    Bressan, P.M., M.C.M. Kierulff, and A.M. Sugieda. 2009. Fauna ameaçada de extinção no estado de São Paulo: vertebrados. São Paulo: Fundação Parque Zoológico de São Paulo, Secretaria do Meio Ambiente. Google Scholar

    18.

    Bücherl, W., and E.E. Buckley (editors). 1971. Venomous vertebrates. New York: Academic Press. Google Scholar

    19.

    Campos, F.S., G.A. Llorente, L. Rincón, R. Lourenço-de-Moraes, and M. Solé. 2016. Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest. Web Ecology 16: 9–12. Google Scholar

    20.

    Caramaschi, U., and I. Sazima. 1984. Uma nova espécie de Thoropa da Serra do Cipó, Minas Gerais, Brasil (Amphibia, Leptodactylidae). Revista Brasileira de Zoologia 2: 139–146. Google Scholar

    21.

    Caramaschi, U. et al. 2000. Anfíbios. In C.F.D. Rocha, H.G. Bergallo, M.A.S. Alves, and M. Van Sluys (editors), A fauna ameaçada de extinção do estado do Rio de Janeiro: 75–78. Rio de Janeiro: EdUERJ. Google Scholar

    22.

    Carvalho-e-Silva, S.P., and O.L. Peixoto. 2004. Thoropa petropolitana. In The IUCN red list of threatened species. Online resource (eT21817A9322082). [ https://doi.org/10.2305/iucn.uk.2004.rlts.t21817a9322082.enGoogle Scholar

    23.

    Carvalho-e-Silva, S.P. et al. 2020. Parque Nacional da Serra dos Órgãos: the highest amphibian diversity within an Atlantic Forest protected area. Biota Neotropica 20: e20201033. Google Scholar

    24.

    Cei, J.M. 1968. Distribution et spécialisation des batraciens sudaméricains. In E. Rapoport and C. Delamare-Deboutteville (editors), Biologie de l'Amerique australe: études sur la faune du sol 4: 199–214. Paris: CNRS. Google Scholar

    25.

    Cei, J.M., V. Erspamer, and M. Roseghini. 1967. Taxonomic and evolutionary significance of biogenic amines and polypeptides occurring in amphibian skin. I. Neotropical leptodactylid frogs. Systematic Zoology 16: 328–342. Google Scholar

    26.

    Cholak, L.R., C.F.B. Haddad, and P.P. Parise-Maltempi. 2020. Cytogenetic analysis of the genus Thoropa Cope, 1865 (Anura-Cycloramphidae) with evolutionary inferences based on repetitive sequences. Genetics and Molecular Biology 43: e20190364. Google Scholar

    27.

    Cochran, D.M. 1938. Diagnoses of new frogs from Brazil. Proceedings of the Biological Society of Washington 51: 41–42. Google Scholar

    28.

    Cochran, D.M. 1955 (“1954”). Frogs of southeastern Brazil. United States National Museum Bulletin: 1–423. Google Scholar

    29.

    Cocroft, R.B., and W.R. Heyer. 1988. Notes on the frog genus Thoropa (Amphibia: Leptodactylidae) with a description of a new species (Thoropa saxatilis). Proceedings of the Biological Society of Washington 101: 209–220. Google Scholar

    30.

    Colaço, G., and H.R. da Silva. 2022. Finding a pathway through the rocks: the role of development on the evolution of quasi-terrestriality and the origin of endotrophism in cycloramphids (Anura). Biological Journal of the Linnean Society 137: 294–323. Google Scholar

    31.

    Colaço, G., G.B. Bittencourt-Silva, and H.R. da Silva. 2020. Can a shade shed light on the monophyly of Cycloramphidae (Lissamphibia: Anura)? Zoologischer Anzeiger 285: 18–26. Google Scholar

    32.

    Colaço, G., M. Baêta, G. Limp, M.C. Batista, and H.R. da Silva. 2024. Development of buccopharyngeal features in Thoropa miliaris (Spix, 1824) tadpoles (Anura: Cycloramphidae): implications to character coding in systematics studies. Zoologischer Anzeiger 312: 69–78. Google Scholar

    33.

    Cruz, C.A.G., and R.N. Feio. 2007. Endemismos em anfíbios em áreas de altitude na Mata Atlântica no sudeste do Brasil. In L.B. Nascimento, and M.E. Oliveira (editors), Herpetologia no Brasil II: 200. São Paulo: Sociedade Brasileira de Herpetologia. Google Scholar

    34.

    Dias, P.H.S. et al. 2021. Life on the edge: tadpoles of Cycloramphidae (Amphibia; Anura), anatomy, systematics, functional morphology, and comments on the evolution of semiterrestrial tadpoles. Journal of Zoological Systematics and Evolutionary Research 59: 1297–1321. Google Scholar

    35.

    DOE-ES. 2022. Decreto N° 5.237-R, de 25 de novembro de 2022. 12 pp. Google Scholar

    36.

    DOE- SP. 2008. Decreto N° 53.494, de 2 de outubro de 2008, 118. Tertiary DOE-SP, Diário Oficial do estado de São Paulo, São Paulo, 10. Google Scholar

    37.

    DOE-SP. 2010. Decreto N° 56.031, de 20 de julho de 2010, 120. Tertiary DOE-SP, Diário Oficial do estado de São Paulo, São Paulo, 6. Google Scholar

    38.

    Dorigo, T.A., D. Vrcibradic, and C.F.D. Rocha. 2018. The amphibians of the state of Rio de Janeiro, Brazil: an updated and commented list. Papéis Avulsos de Zoologia 58: e20185805. Google Scholar

    39.

    DOU. 2014. Portaria MMA N° 444, de 17 de dezembro de 2014, Tertiary DOU, Diário Oficial da União, Ministério do Meio Ambiente, Brasília, DF, 121–126. Google Scholar

    40.

    DOU. 2015. Portaria MMA N° 48, de 6 de outubro de 2015, Tertiary DOU, Diário Oficial da União, Ministério do Meio Ambiente, Brasília, DF, 3. Google Scholar

    41.

    DOU. 2022a. Portaria GM/MMA N° 300, de 13 de dezembro de 2022, Tertiary DOU, Diário Oficial da União, Ministério do Meio Ambiente, Brasília, DF, 90. Google Scholar

    42.

    DOU. 2022b. Portaria MMA N° 148, de 7 de junho de 2022, Tertiary DOU, Diário Oficial da União, Ministério do Meio Ambiente, Brasília, DF, 116. Google Scholar

    43.

    Duellman, W.E. 1970. The hylid frogs of Middle America, 1. Lawrence: University of Kansas. Google Scholar

    44.

    Duellman, W.E. (editor). 1999. Patterns of distribution of amphibians: a global perspective. Baltimore: Johns Hopkins University Press. Google Scholar

    45.

    Duellman, W.E., and L. Trueb. 1994. Biology of Amphibians. Baltimore: Johns Hopkins University Press. Google Scholar

    46.

    Duellman, W.E. 2001. Hylid frogs of Middle America, 1. Lawrence: University of Kansas. Google Scholar

    47.

    Elias-Costa, A.J., R. Montesinos, T. Grant, and J. Faivovich. 2017. The vocal sac of Hylodidae (Amphibia, Anura): phylogenetic and functional implications of a unique morphology. Journal of Morphology 278: 1506–1516. Google Scholar

    48.

    Elias-Costa, A.J., K. Araujo-Vieira, and J. Faivovich. 2021. Evolution of the strikingly diverse submandibular muscles in Anura. Cladistics 37 (5): 489–517. Google Scholar

    49.

    Erspamer, V., G.F. Erspamer, and J.M. Cei. 1986. Active peptides in the skins of 230 american amphibian species. Comparative Biochemistry and Physiology 85C: 125–137. Google Scholar

    50.

    Eterovick, P.C. et al. 2005. Amphibian declines in Brazil: an overview. Biotropica 37: 166–179. Google Scholar

    51.

    Fabrezi, M., and P. Alberch. 1996. The carpal elements of anurans. Herpetologica 52: 188–204. Google Scholar

    52.

    Feio, R.N. 2002. Revisão taxonômica do gênero Thoropa Cope, 1865 (Amphibia, Anura, Leptodactylidae). Ph.D. dissertation, Museu Nacional, Universidade Federal do Rio de Janeiro. Google Scholar

    53.

    Feio, R.N. 2008. Thoropa petropolitana (Wandolleck, 1907). In A.B.M. Machado, G.M. Drummond, and A.P. Paglia (editors), Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, 1st ed.: 317–318. Brasília, Belo Horizonte: Instituto Chico Mendes de Conservação da Biodiversidade, Fundação Biodiversitas. Google Scholar

    54.

    Feio, R.N., M.F. Napoli, and U. Caramaschi. 2006. Considerações taxonômicas sobre Thoropa miliaris (Spix, 1824), com revalidação e redescrição de Thoropa taophora (Miranda-Ribeiro, 1923) (Amphibia, Anura, Leptodactylidae). Arquivos do Museu Nacional 64: 41–60. Google Scholar

    55.

    Ferreira, R.B. et al. 2019a. Anfíbios ameaçados de extinção no estado do Espírito Santo. In C.N. Fraga, M.H. Formigoni, and F.G. Chaves (editors), Fauna e flora ameaçadas de extinção no estado do Espírito Santo: 257–269. Santa Teresa, Brazil: Instituto Nacional da Mata Atlântica. Google Scholar

    56.

    Ferreira, R.B. et al. 2019b. Amphibians of Santa Teresa, Brazil: the hotspot further evaluated. Zookeys 857: 139–162. Google Scholar

    57.

    Fitzinger, L.J.F.J. 1861 (“1860”). Die Ausbeute der österreichischen Naturforscher an Säugethieren und Reptilien während der Weltumsegelung Sr. Majestät Fregatte Novare. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 42: 383–416. Google Scholar

    58.

    Flier, J., M.W. Edwards, J.W. Daly, and C.W. Myers. 1980. Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na+, K+ -ATPase. Science 208: 503–505. Google Scholar

    59.

    Fraga, C.N. et al. 2019. Lista da fauna e flora ameaçadas de extinção no estado do Espírito Santo. In C.N. Fraga, M.H. Formigoni, and F.G. Chaves (editors), Fauna e flora ameaçadas de extinção no estado do Espírito Santo: 343–397. Santa Teresa, Brazil: Instituto Nacional da Mata Atlântica. Google Scholar

    60.

    Fritz, U. 2002. Herpetology and herpetological type specimens at the Museum für Tierkunde Dresden with a bibliography of herpetological contributions by Fritz Jürgen Obst (Amphibia, Reptilia). Faunistische Abhandlungen Staatliches Museum für Tierkunde Dresden 23: 3–34. Google Scholar

    61.

    Frost, D.R. 2025. Amphibian species of the world: an online reference. Version 6.2. Internet resource (  https://amphibiansoftheworld.amnh.org/index.php ), accessed January 16, 2025. Google Scholar

    62.

    Galetti, M. et al. 2021. Causes and consequences of large-scale defaunation in the Atlantic Forest. In M.C.M. Marques, and C.E.V. Grelle (editors), The Atlantic Forest: history, biodiversity, threats and opportunities of the mega-diverse forest: 297–324. Chams, Switzerland: Springer. Google Scholar

    63.

    Gallardo, J.M. 1965. A proposito de los Leptodactylidae (Amphibia, Anura). Papéis Avulsos de Zoologia 17: 77–87. Google Scholar

    64.

    Gan, L.L., S.T. Hertwig, I. Das, and A. Haas. 2016. The anatomy and structural connectivity of the abdominal sucker in the tadpoles of Huia cavitympanum, with comparisons to Meristogenys jerboa (Lissamphibia: Anura: Ranidae). Journal of Zoological Systematics and Evolutionary Research 54: 46–59. Google Scholar

    65.

    Gans, C. 1955. Localities of the herpetological collections made during the “Novara Reise.” Annals of the Carnegie Museum 33: 275–285. Google Scholar

    66.

    Garcia, P.C.A. et al. 2009. Anfíbios. In P.M. Bressan, M.C.M. Kierulff, and A.M. Sugieda (editors), Fauna ameaçada de extinção no estado de São Paulo: vertebrados 645. São Paulo: Fundação Parque Zoológico de São Paulo, Secretaria do Meio Ambiente. Google Scholar

    67.

    Garey, M.V., and D.B. Provete. 2016. Species composition, conservation status, and sources of threat of anurans in mosaics of highland grasslands of southern and southeastern Brazil. Oecologia Australis 20: 232–246. Google Scholar

    68.

    Gasparini, J.L., A.P. Almeida, C.A.G. Cruz, and R.N. Feio. 2007. Os anfíbios ameaçados de extinção no estado do Espírito Santo. In M. Passamani and S.L. Mendes (editors), Espécies da fauna ameaçadas de extinção no estado do Espírito Santo: 75–86. Vitória, Brazil: Instituto de Pesquisas da Mata Atlântica. Google Scholar

    69.

    Gherardi, D.F.M., and A.P. Cabral. 2007. Atlas de sensibilidade ambiental ao óleo da Bacia Marítima de Santos. Brasília: Ministério do Meio Ambiente. Google Scholar

    70.

    Giaretta, A.A., and K.G. Facure. 2004. Reproductive ecology and behavior of Thoropa miliaris (Spix, 1824) (Anura, Leptodactylidae, Telmatobiinae). Biota Neotropica 4: 1–10. Google Scholar

    71.

    Glaw, F., J. Köhler, R. Hofrichter, and A. Dubois. 1998. Systematik der Amphibien: liste der rezenten Familien, Gattungen und Arten. Alytes 1870: 252–258. Google Scholar

    72.

    Gosner, K.L. 1960. A simplified table for staging anuran embryos and larvae with notes and identification. Herpetologica 16: 183–190. Google Scholar

    73.

    Guenther, K. 1931. A naturalist in Brazil. Boston: Houghton Mifflin Company. Google Scholar

    74.

    Guerra, V., L. Jardim, D. Llusia, R. Márquez, and R.P. Bastos. 2020. Knowledge status and trends in description of amphibian species in Brazil. Ecological Indicators 118: 106754. Google Scholar

    75.

    Haddad, C.F.B. 2008. Uma análise da lista brasileira de anfíbios ameaçados de extinção. In ICMBio (editor), Livro vermelho da fauna brasileira ameaçada de extinção 287–295. Brasília, Belo Horizonte: ICMBio, Fundação Biodiversitas. Google Scholar

    76.

    Haddad, C.F.B., and C.P.A. Prado. 2005. Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlantic Forest of Brazil. BioScience 55: 207–217. Google Scholar

    77.

    Haddad, C.F.B. et al. 2018. Thoropa petropolitana (Wandolleck, 1907). In ICMBio (editor), Livro vermelho da fauna brasileira ameaçada de extinção, 1st ed.: 55–57. Brasília: ICMBio. Google Scholar

    78.

    Häulp, M., and F. Tiedemann. 1978. Vertebrata 1. Typenkatalog der herpetologischen Sammlung. Kataloge der wissenschaftlichen Sammlungen des naturhistorischen Museums in Wien 2: 7–34. Google Scholar

    79.

    Heyer, W.R. 1975. A preliminary analysis of the intergeneric relationships of the frog family Leptodactylidae. Smithsonian Contributions to Zoology 199: 1–55. Google Scholar

    80.

    Heyer, W.R. 1999. A new genus and species of frog from Bahia, Brazil (Amphibia: Anura: Leptodactylidae) with comments on the zoogeography of Brazilian campos rupestres. Proceedings of the Biological Society of Washington 112: 19–39. Google Scholar

    81.

    Heyer, W.R., and R.I. Crombie. 1979. Natural history notes on Craspedoglossa stejnegeri and Thoropa petropolitana (Amphibia: Salientia, Leptodactylidae). Journal of Washington Academy of Sciences 69: 17–20. Google Scholar

    82.

    Heyer, W.R., A.S. Rand, C.A.G. Cruz, and O.L. Peixoto. 1988. Decimations, extinctions, and colonizations of frog populations in southeast Brazil and their evolutionary implications. Biotropica 20: 230–235. Google Scholar

    83.

    Heyer, W.R., A.S. Rand, C.A.G. Cruz, O.L. Peixoto, and C.E. Nelson. 1990. Frogs of Boracéia. Arquivos de Zoologia 31: 231–410. Google Scholar

    84.

    ICMBio. 2008a. Livro vermelho da fauna brasileira ameaçada de extinção, 2. Tertiary ICMBio. Brasília, Belo Horizonte: ICMBio, Fundação Biodiversitas. Google Scholar

    85.

    ICMBio. 2008b. Livro vermelho da fauna brasileira ameaçada de extinção, 1. Tertiary ICMBio. Brasília, Belo Horizonte: ICMBio, Fundação Biodiversitas. Google Scholar

    86.

    ICMBio. 2018a. Livro vermelho da fauna brasileira ameaçada de extinção, 5. Anfíbios. Tertiary ICMBio. Brasília, Belo Horizonte: ICMBio, Fundação Biodiversitas. Google Scholar

    87.

    ICMBio. 2018b. Livro vermelho da fauna brasileira ameaçada de extinção, 1 Tertiary ICMBio. Brasília, Belo Horizonte: ICMBio, Fundação Biodiversitas. Google Scholar

    88.

    ICZN. 1999. International Code of Zoological Nomenclature. London: International Trust for Zoological Nomenclature. Google Scholar

    89.

    ICZN. 2003. International Code of Zoological Nomenclature: Declaration 44. Amendment of Article 74.7.3. Bulletin of Zoological Nomenclature 60: 263. Google Scholar

    90.

    IUCN (editor). 1996. 1996 IUCN Red list of threatened animals. Gland, Cambridge: IUCN. Google Scholar

    91.

    IUCN, S.S.C.A.S.G., and Instituto Boitatá E.C.F. 2023. Thoropa petropolitana. The IUCN red list of threatened species: e.T21817A172198317. [ https://doi.org/10.2305/iucn.uk.2023-1.rlts.t21817a172198317Google Scholar

    92.

    Izecksohn, E., and S.P. Carvalho-e-Silva. 2001. Anfíbios do município do Rio de Janeiro. Rio de Janeiro: Editora UFRJ. Google Scholar

    93.

    Izecksohn, E., and S.P. Carvalho-e-Silva. 2010. Anfíbios do município do Rio de Janeiro. Rio de Janeiro: Editora UFRJ. Google Scholar

    94.

    Jorgewich-Cohen, G., P.H.S. Dias, and M. Targino. 2019. Relatos sobre a conservação ex-situ de anfíbios no Equador: como as experiências do Centro Jambatu e da Balsa de los Sapos podem ser aplicadas no Brasil. Herpetologia Brasileira 8: 56–75. Google Scholar

    95.

    Lavilla, E.O., U. Caramaschi, J.A. Langone, and D. Baêta. 2022. Etymologies of Brazilian amphibians. Herpetologia Brasileira 11: 7–290. Google Scholar

    96.

    Liner, E.A. 2009. Herpetological bibliography and scientific name index to the Bulletin of Southern California Academy of Sciences, Vol. 1–90, 1901–1991 and the Memoirs 1–10, 1938–1986. Houma: Smithsonian Herpetological Information Service Google Scholar

    97.

    Lisboa, C.S., R.I. Vaz, and C.A. Brasileiro. 2021. Captive breeding program for Scinax alcatraz (Anura: Hylidae): introducing amphibian ex situ conservation in Brazil. 2021 14: 279–288. Google Scholar

    98.

    Lopes, B.B., C.S. Santos, H.R. Luz, B.P. Berto, and C.W.G. Lopes. 2013. Adelina sp. (Apicomplexa: Adeleidae), a pseudoparasite of Thoropa miliaris Spix (Amphibia: Cycloramphidae) in southeastern Brazil. Coccidia 1: 26–31. Google Scholar

    99.

    Lopes, C.M. et al. 2020. Lost and found: frogs in a biodiversity hotspot rediscovered with environmental DNA. Molecular Ecology 30: 3289–3298. Google Scholar

    100.

    Luna, M.C., R.W. McDiarmid, and J. Faivovich. 2018. From erotic excrescences to pheromones shots: structure and diversity of nuptial pads in anurans. Biological Journal of the Linnean Society 124: 403–446. Google Scholar

    101.

    Lutz, A. 1928. Biologie et métamorphose des batraciens du genre Cyclorhamphus. Comptes Rendus et Mémoires Hebdomadaires des Séances de la Société de Biologie et des ses Filiales 1: 640. Google Scholar

    102.

    Lutz, A. 1929. Taxonomia e biologia do genero Cyclorhamphus/Taxonomy and biology of the genus Cyclorhamphus. Memórias do Instituto Oswaldo Cruz 22: 5–25. Google Scholar

    103.

    Lutz, B. 1947. Trends towards non-aquatic and direct development in frogs. Copeia 1947: 242–252. Google Scholar

    104.

    Lutz, B. 1948. Ontogenetic evolution in frogs. Evolution 2: 29–39. Google Scholar

    105.

    Lutz, B. 1954. Anfíbios anuros do Distrito Federal. Memórias do Instituto Oswaldo Cruz 52: 155–197. Google Scholar

    106.

    Lynch, J.D. 1971. Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs. Miscellaneous Publications: 1–238. Google Scholar

    107.

    Lynch, J.D. 1972. Generic partitioning of the South American leptodactylid frog genus Eupsophus Fitzinger, 1843 (sensu lato). Bulletin of the Southern California Academy of Sciences 71: 2–11. Google Scholar

    108.

    Lynch, J.D. 1978. A re-assessment of the telmatobiine leptodactylid frogs of Patagónia. Occasional Papers of the Museum of Natural History 1–57. Google Scholar

    109.

    Maxson, L.R., and W.R. Heyer. 1982. Leptodactylid frogs and the Brasilian Shield: an old and continuing adaptive relationship. Biotropica 14: 10–15. Google Scholar

    110.

    McDiarmid, R.W., and R. Altig. 1999. Tadpoles: the biology of anuran larvae. Chicago: University of Chicago Press. Google Scholar

    111.

    Miranda-Ribeiro, A. 1923. Os hylodideos do Museu Paulista. Revista do Museu Paulista 13: 825–846. Google Scholar

    112.

    Miranda-Ribeiro, A. 1926. Notas para servirem ao estudo dos Gymnobatrachios (Anura) brasileiros. Arquivos do Museu Nacional 27: 248. Google Scholar

    113.

    Morais, A.R., R.T. Braga, R.P. Bastos, and D. Brito. 2012. A comparative analysis of global, national, and state red lists for threatened amphibians in Brazil. Biodiversity and Conservation 21: 2633–2640. Google Scholar

    114.

    Moura, P.H.A.G., S.R. Alves Júnior, D.G. Souza e Sousa, C.N. Correa, and I. Nunes. 2019. Redescription of the tadpole of Thoropa taophora (Miranda-Ribeiro) (Anura: Cycloramphidae). Zootaxa 4656: 397–400. Google Scholar

    115.

    Müller, L. 1927. Amphibien und Reptilien der Ausbeute Prof. Bresslau's in Brasilien 1913–14. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, Frankfurt am Main 40: 259–304. Google Scholar

    116.

    Müller, P. 1972. Der neotropische Artenreichtum als biogeographisches Problem. Festbundel Brongersma, Zoologische Medelingen 47: 88–110. Google Scholar

    117.

    Nascimento, J.L., and I.B. Campos. 2011. Atlas da fauna brasileira ameaçada de extinção em unidades de conservação federais. Brasília: ICMBio. Google Scholar

    118.

    Nieden, F. 1923. Anura I. Subordo Aglossa und Phaneroglossa, Sectio 1. Arcifera. Das Tierreich 46: xxxii + 584. Google Scholar

    119.

    Nishikawa, K., and R. Wassersug. 1989. Evolution of spinal nerve number in anuran larvae. Brain Behavior and Evolution 33: 15–24. Google Scholar

    120.

    Noble, G.K. 1917. The systematic status of some batrachians from South America. Bulletin of the American Museum of Natural History 37 (30): 793–814. Google Scholar

    121.

    Noble, G.K. 1925. An outline of the relation of ontogeny to phylogeny within the Amphibia. I. American Museum Novitates 165: 1–17. Google Scholar

    122.

    Noble, G.K. 1927. The value of life history data in the study of the evolution of the Amphibia. Annals of the New York Academy of Sciences 30: 31–128. Google Scholar

    123.

    Noble, G.K. 1931. The biology of the Amphibia. New York: McGraw-Hill Book Company. Google Scholar

    124.

    Noble, G.K. 1954. The biology of the Amphibia. New York: Dover Publications. Google Scholar

    125.

    Nunes-de-Almeida, C.H.L., C.L. Assis, R.N. Feio, and L.F. Toledo. 2016. Redescription of the advertisement call of five species of Thoropa (Anura, Cycloramphidae), including recordings of rare and endangered species. Plos One 11: e0162617. Google Scholar

    126.

    Obst, F.J. 1977. Die herpetologische Sammlung des Staatlichen Museums für Tierkunde Dresden und ihre Typusexemplare. Zoologische Abhandlungen, Staatliches Museum für Tierkunde in Dresden 34: 171–186. Google Scholar

    127.

    Ohaus, F. 1909. Bericht über eine entomologische Studienreise in Südamerika. Entomologische Zeitung herausgegeben von dem entomologischen Vereine zu Stettin 70: 1–139. Google Scholar

    128.

    Paglia, A.P., et al., 2004. Conservation gaps and irreplaceable sites for protecting vertebrates species in the Brazilian Atlantic Forest. Curitiba, Brazil: Fundação o Boticário de Proteção à Natureza and Rede Nacional Pró Unidades de Conservação. Google Scholar

    129.

    Paglia, A.P., and G.A.B. Fonseca. 2009. Assessing changes in the conservation status of threatened Brazilian vertebrates. Biodiversity and Conservation 18: 3563–3577. Google Scholar

    130.

    Parker, H.W. 1932. On the systematic status of some frogs. Annals and Magazine of Natural History 10: 341–344. Google Scholar

    131.

    Passamani, M., and S.L. Mendes. 2007. Espécies da fauna ameaçadas de extinção no estado do Espírito Santo. Vitória, Brazil: Instituto de Pesquisas da Mata Atlântica. Google Scholar

    132.

    Pereyra, M.O. et al. 2016. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Scientific Reports 6: 34130. Google Scholar

    133.

    Pimenta, B.V.S., C.F.B. Haddad, L.B. Nascimento, C.A.G. Cruz, and J.P. Pombal, Jr . 2005. Comment on “Status and trends of amphibian declines and extinctions worldwide.” Science 309: 1999b. Google Scholar

    134.

    Pinto, O. 1945. Cinqüenta anos de investigação ornitológica. Arquivos de Zoologia IV: 261–340. Google Scholar

    135.

    RAN. 2019. Sumário executivo do Plano de Ação Nacional para a conservação da herpetofauna ameaçada da Mata Atlântica da região sudeste do Brasil, Tertiary RAN. Brasília: ICMBio. Google Scholar

    136.

    Reichert, R. 1954. Ein Stück Museumsgeschichte. Abhandlungen und Berichte aus dem Staatlichen Museum für Tierkunde in Dresden 22: 1–11. Google Scholar

    137.

    Reichert, R. 1956. Über 200 Jahre Museumsgeschichte. In D.W. Museen (editors), Beiträge zur 750-Jahr-Feier unserer Stadt: 1–7. Google Scholar

    138.

    Rocha, C.F.D. et al. 2004. Fauna de anfíbios, répteis e mamíferos do estado do Rio de Janeiro, sudeste do Brasil. Publicações Avulsas do Museu Nacional 1–23. Google Scholar

    139.

    Rocha, C.F.D., H.G. Bergallo, M.A.S. Alves, and M. Van Sluys. 2009. Análise da distribuição da diversidade da fauna no estado do Rio de Janeiro. In H.G. Bergalo et al. (editors), Estratégias para a conservação da biodiversidade no estado do Rio de Janeiro: 111–126. Rio de Janeiro: Instituto Biomas. Google Scholar

    140.

    Roseghini, M., V. Erspamer, G.F. Erspamer, and J.M. Cei. 1986. Indole-, imidazole- and phenyl-alkylamines in the skin of 140 american amphibian species other than bufonids. Comparative Biochemistry and Physiology 85C: 139–147. Google Scholar

    141.

    Rossa-Feres, D.C. et al. 2008. Herpetofauna. In R.R. Rodrigues, and V.L.R. Bononi (editors), Diretrizes para conservação e restauração da biodiversidade no estado de São Paulo: 83–94. São Paulo: Instituto de Botânica. Google Scholar

    142.

    Rossa-Feres, D.C. et al. 2011. Amphibians of São Paulo State, Brazil: state-of-art and perspectives. Biota Neotropica 11: 47–66. Google Scholar

    143.

    Rossa-Feres, D.C. et al. 2017. Anfíbios da Mata Atlântica: lista de espécies, histórico dos estudos, biologia e conservação. In E.L.d.A. Monteiro-Filho, and C.E. Conte (editors), Revisões em zoologia: Mata Atlântica 237–314. Curitiba, Brazil: Editora UFPR. Google Scholar

    144.

    Sabaj, M.H. 2020. Codes for natural history collections in ichthyology and herpetology. Copeia 108 (3): 593–669. Google Scholar

    145.

    Sabbag, A.F. et al. 2018. Molecular phylogeny of Neotropical rock frogs reveals a long history of vicariant diversification in the Atlantic forest. Molecular Phylogenetics and Evolution 122: 142–156. Google Scholar

    146.

    Sabbag, A.F., T. Grant, P. Dodonov, C.A. Brasileiro, and C.F.B. Haddad. 2022a. Nuptial pads of rock frogs (Thoropa, Cycloramphidae, Anura): how papillary epidermal projections are related to sexual maturity and taxonomy. Zoologischer Anzeiger 301: 1–10. Google Scholar

    147.

    Sabbag, A.F. et al. 2022b. Sympatric and independently evolving lineages in the Thoropa miliarisT. taophora species complex (Anura: Cycloramphidae). Molecular Phylogenetics and Evolution 166: 107220. Google Scholar

    148.

    Sabbag, A.F., T.R. Carvalho, C.A. Brasileiro, R.C. Consolmagno, and C.F.B. Haddad. 2024. Revisiting the vocal tepertoire of Thoropa miliaris and T. taophora (Anura: Cycloramphidae): insights into the acoustic divergence among lineages. Herpetologica 80: 321–332. Google Scholar

    149.

    Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. Google Scholar

    150.

    Schulte, L.M., and D. Rödder. 2016. Adolpho (1855–1940) und Bertha Lutz (1884–1976) – Leben und Werke. Mertensiella 23: 245–260. Google Scholar

    151.

    Segalla, M.V. et al. 2014. Brazilian amphibians: list of species. Herpetologia Brasileira 3: 37–48. Google Scholar

    152.

    Segalla, M.V. et al. 2016. Brazilian amphibians: list of species. Herpetologia Brasileira 5: 34–46. Google Scholar

    153.

    Segalla, M.V. et al. 2019. Brazilian amphibians: list of species. Herpetologia Brasileira 8: 65–96. Google Scholar

    154.

    Segalla, M.V. et al. 2021. List of Brazilian amphibians. Herpetologia Brasileira 10: 121–216. Google Scholar

    155.

    Silva, E.T. 2009. Rã-das-pedras (Thoropa miliaris). Bicho da Vez: 1–2. Google Scholar

    156.

    Silvano, D.L., and M.V. Segalla. 2005. Conservation of Brazilian amphibians. Conservation Biology 19: 653–658. Google Scholar

    157.

    Steindachner, F. 1867. Reise der österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair. Pt. 9, Bd. 1, Abt. 4. Vienna: K.K. Hof- und Staatsdruckerei. Google Scholar

    158.

    Straube, N. et al. 2021. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Molecular Ecology Resources 21: 2299–2315. Google Scholar

    159.

    Stuart, S. et al. 2008. Threatened amphibians of the world. Barcelona: Lynx Ediciones. Google Scholar

    160.

    Taboada, C., T. Grant, J.D. Lynch, and J. Faivovich. 2013. New morphological synapomorphies for the new world direct-developing frogs (Amphibia: Anura: Terrarana). Herpetologica 69: 342–357. Google Scholar

    161.

    Tanizaki-Fonseca, K., et al. 2009. Região serrana de economia diversificada. In H.G. Bergalo et al. (editors), Estratégias para a conservação da Biodiversidade no Estado do Rio de Janeiro: 279–283. Rio de Janeiro: Instituto Biomas. Google Scholar

    162.

    Toledo, L.F., et al. 2023. A retrospective overview of amphibian declines in Brazil's Atlantic Forest. Biological Conservation 277: Google Scholar

    163.

    Trindade-Filho, J., R.A. Carvalho, D. Brito, and R.D. Loyola. 2012. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest? Biodiversity and Conservation 21: 2709–2718. Google Scholar

    164.

    Trueb, L. 1993. Patterns of cranial diversity among the Lissamphibia. In J. Hanken and B.K. Hall (editors), The skull. Chicago: University of Chicago Press. Google Scholar

    165.

    Úbeda, C.A., and J.J. Nuñez. 2006. New parental care behaviours in two telmatobiine genera from temperate Patagonian forests: Batrachyla and Eupsophus (Anura: Leptodactylidae). Amphibia-Reptilia 27: 441–444. Google Scholar

    166.

    Valencia-Aguilar, A. et al. 2015. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests. Diseases of Aquatic Organisms 114: 61–67. Google Scholar

    167.

    Van Sluys, M., M.A.S. Alves, H.G. Bergallo, and C.F.D. Rocha. 2000. O status de conservação da fauna do estado do Rio de Janeiro: metodologia de avaliação. In H.G. Bergallo, C.F.D. Rocha, M.A.S. Alves, and M. Van Sluys (editors), A fauna ameaçada de extinção do estado do Rio de Janeiro, 1st ed.: 37–44. Rio de Janeiro: EdUERJ. Google Scholar

    168.

    Van Sluys, M. et al. 2009. Anfíbios nos remanescentes florestais de Mata Atlântica no estado do Rio de Janeiro. In H.G. Bergallo et al. (editors), Estratégias e ações para a conservação da biodiversidade no estado do Rio de Janeiro: 175–182. Rio de Janeiro: Instituto Biomas. Google Scholar

    169.

    Vasconcelos, T.S., F.R. da Silva, T.G. dos Santos, V.H.M. Prado, and D.B. Provete. 2019. Biogeographic patterns of South American anurans. Cham: Springer Nature Switzerland. Google Scholar

    170.

    Verdade, V.K., M.T. Rodrigues, and D. Pavan. 2009. Anfíbios anuros da região da Estação Biológica do Alto da Serra de Paranapiacaba. In M.I.M.S. Lopes, M. Kirizawa, and M.M.R.F. Melo (editors), Patrimônio da Reserva Biológica do Alto da Serra de Paranapiacaba: a antiga Estação Biológica do Alto da Serra: 581–603. São Paulo: Instituto de Botânica. Google Scholar

    171.

    Verdade, V.K. et al. 2012. A leap further: the Brazilian amphibian conservation action plan. Alytes 29: 27–42. Google Scholar

    172.

    Verdade, V.K., D. Almeida-Silva, J. Cassimiro, and M.T. Rodrigues. 2019. Rediscovering Cycloramphus bandeirensis (Anura: Cycloramphidae): natural history and breeding biology of a vulnerable species with a variant reproductive mode. Phyllomedusa 18: 159–175. Google Scholar

    173.

    Wandolleck, B. 1907. Einige neue und weniger bekannte Batrachier von Brazilien. Abhandlungen und Berichte des Zoologischen und Anthropologisch-Ethnographischen Museums zu Dresden 11: 1–15. Google Scholar

    174.

    Wassersug, R.J., and W.R. Heyer. 1983. Morphological correlates of subaerial existence in leptodactylid tadpoles associated with flowing water. Canadian Journal of Zoology 61: 761–769. Google Scholar

    175.

    Wassersug, R.J., and W.R. Heyer. 1988. A survey of internal oral features of leptodactyloid larvae (Amphibia: Anura). Smithsonian Contributions to Zoology: 457. Google Scholar

    176.

    Watters, J.L., S.T. Cummings, R.L. Flanagan, and C.D. Siler. 2016. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072: 477–495. Google Scholar

    177.

    Wells, K.D. 2007. The ecology and behavior of amphibians. Chicago: University of Chicago Press. Google Scholar

    178.

    Werner, F. 1908. III. Reptilia und Amphibia für 1907. Archiv für Naturgeschichte 74: 1–97. Google Scholar

    179.

    Young, B.E., S.N. Stuart, J.S. Chanson, N.A. Cox, and T.M. Boucher. 2004. Disappearing jewels: the status of New World Amphibians. Arlington, VA: NatureServe. Google Scholar

    Appendices

    APPENDIX

    Collections Visited and Analyzed for This Study

    Institutional abbreviations mostly follow Sabaj (2020).

    AAG-UFU Coleção do Prof. Dr. Ariovaldo A. Giaretta, UFU, Uberlândia, MG, Brazil;

    AMNH Department of Herpetology, American Museum of Natural History, New York, NY;

    CAS Herpetology Collection, California Academy of Sciences, San Francisco, CA;

    CFBH Coleção de Anfíbios Célio F.B. Haddad, UNESP, Rio Claro, SP, Brazil;

    CM Section of Herpetology, Carnegie Museum of Natural History, Pittsburgh, PA;

    DZSJRP Coleção Científica de Anfíbios do Departamento de Zoologia e Botânica, UNESP, São José do Rio Preto, SP, Brazil;

    EI Coleção de Anfíbios Eugenio Izecksohn da UFRRJ, Seropédica, RJ, Brazil;

    FMNH Amphibian and Reptile Collection, Field Museum of Natural History, Chicago, IL;

    IRSNB Collection de Vertébrés, Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgique;

    KUMNH Zoologisk Museum, Københavns Universitet, Københavns, Danmark.

    MBML Coleção Zoológica do Museu de Biologia Professor Mello Leitão, Santa Teresa, ES, Brazil;

    MCNAM Coleção de Anfíbios do Museu de Ciências Naturais da PUC-MG, Belo Horizonte, MG, Brazil;

    MCP Coleção de Herpetologia do Museu de Ciências e Tecnologia da PUC-RS, Porto Alegre, RS, Brazil;

    MCZ Herpetology Collection, Museum of Comparative Zoology, Harvard University, Cambridge, MA;

    MNHN Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France;

    MNRJ Coleção Herpetológica do Museu Nacional, Rio de Janeiro, RJ, Brazil;

    MTR Coleção do Miguel Trefault Rodrigues, USP, São Paulo, SP, Brazil;

    MVZ Museum of Vertebrate Zoology, University of California, Berkeley, CA;

    MZUESC Coleção de Anfíbios do Museu de Zoologia da UESC, Ilhéus, BA, Brazil;

    MZUFV Coleção de Anfíbios do Museu de Zoologia João Moojen da UFV, Viçosa, MG, Brazil;

    MZUSP Coleção Herpetológica do Museu de Zoologia da USP, São Paulo, SP, Brazil;

    NMW Herpetologische Sammlung, Naturhistorisches Museum Wien, Wien, Österreich;

    TNHC Texas Natural History Collections, University of Texas, Austin, TX;

    UFMG Coleção de Anfíbios do Laboratório de Herpetologia da UFMG, Belo Horizonte, MG, Brazil;

    UFRRJ-RU Coleção de Anfíbios da UFRRJ, Seropédica, RJ, Brazil;

    UMMZ Herpetology Collection, Museum of Zoology, University of Michigan, Ann Arbor, MI;

    USNM Division of Amphibians and Reptiles, National Museum of Natural History, Washington, DC;

    ZUEC Coleção de Anfíbios do Museu de Zoologia “Adão José Cardoso” da UNI-CAMP, Campinas, SP, Brazil;

    ZUFRJ Coleção Herpetológica do Departamento de Zoologia da UFRJ, Rio de Janeiro, RJ, Brazil.

    Ariadne Fares Sabbag, Délio Baêta, Taran Grant, Renato N. Feio, and Célio F.B. Haddad "On the Type Series of Hylodes petropolitanus Wandolleck, 1907 (Anura, Cycloramphidae), with Taxonomic Considerations of Eupsophus fuliginosus Fitzinger, 1861," American Museum Novitates 2025(4031), 1-36, (31 January 2025). https://doi.org/10.1206/4031.1
    Published: 31 January 2025
    Back to Top