Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The results of a morphological and molecular systematic investigation of the poorly known Sicilian endemic species Peucedanum nebrodense (Guss.) Nyman (Apiaceae subfam. Apioideae) are presented in order to better characterize the species and clarify its phylogenetic position. Morphological, karyological, anatomical, and ontogenetic studies indicate that this species is taxonomically distinct. Phylogenetic analysis of combined morphological and nuclear ribosomal DNA (nrDNA) ITS sequence data suggests an affinity with Dichoropetalum Fenzl, whereas an unweighted pair group method with arithmetic mean (UPGMA) analysis, based on 36 morphological characters, suggests that P. nebrodense is similar to Ormosolenia Tausch. Given its unusual life cycle; distinct suffruticose, evergreen, and dwarf habit; and peculiar fruit anatomy, we recognize P. nebrodense as distinct from Ormosolenia and Dichoropetalum, and we treat it as the new monotypic genus Siculosciadium C. Brullo, Brullo, S. R. Downie & Giusso based on S. nebrodense (Guss.) C. Brullo, Brullo, S. R. Downie & Giusso [≡ Pteroselinum nebrodense Guss.], which is lectotypified herein.
The flower-visiting records for the 43 species of bees considered to be native to New Caledonia show that females of 21 species visited 116 native species of plants in 69 genera and 41 families, and the bees were documented to carry pollen from 64 species and possibly four more. The plant families with the greatest number of species documented for visits by female bees were, in descending order: Myrtaceae (21), Dilleniaceae (10), Cunoniaceae (nine), Araliaceae (seven), Fabaceae (seven, encompassing the Caesalpinioideae, Mimosoideae, and Papilionoideae), Goodeniaceae (five), Proteaceae (five), Apocynaceae (four), Sapindaceae (four), and remaining families with one to three species. Females of six and possibly one more species carried pollen from each of Dilleniaceae and Myrtaceae, six carried pollen from Araliaceae, five from Goodeniaceae, four and possibly one more from Cunoniaceae, four from each of Fabaceae and Sapindaceae, and none to three from the remaining 34 families observed. For introduced plants, female bees of 12 species visited 54 species in 43 genera among 19 plant families and were documented to carry pollen from 31 and possibly one more species. For introduced plants, families with the highest number of species visited by female bees, in descending order, were: Asteraceae (12); Fabaceae (eight); Verbenaceae (seven); and Euphorbiaceae, Myrtaceae, and Solanaceae each with three. The remaining 13 families had either one or two species visited by bees. Females of seven species of bees carried pollen from Fabaceae, six from Asteraceae, three each from Myrtaceae and Solanaceae, and none to “2 1?” (two or possibly three) from remaining families. Only half a dozen species of native bees can be considered to be common, in that they can be expected to be observed reasonably regularly on a range of flowers. The ubiquitous introduced honey bee Apis mellifera L. and its constant foraging for nectar and pollen on a very wide range of flowers may outcompete many species of native bees, potentially reducing their numbers, and consequently obscuring their relationships with the flora.
The subtribe Orthosiinae (Apocynaceae, Asclepiadoideae, Asclepiadeae) is monophyletic and comprises four genera. Monsanima Liede & Meve is herein validly established, comprising one species, M. morrenioides (Goyder) Liede & Meve. This new genus is sister to a clade consisting of Jobinia E. Fourn., Orthosia Decne., and Scyphostelma Baill. A taxonomic key to these four genera is provided. For Jobinia, one species, J. peruviana Liede & Meve, is newly described, and 13 species previously treated principally under Cynanchum L. are transferred, so that the genus now comprises 25 species. Jobinia fontellana Liede & Meve is proposed as a new name, replacing O. hatschbachii Fontella & Goes. The following new combinations are made in Jobinia: J. canoi (Morillo) Liede & Meve, J. formosa (N. E. Br.) Liede & Meve, J. latipes (Decne.) Liede & Meve, J. mazzuchii (Speg.) Liede & Meve, J. samuelssonii (Malme) Liede & Meve, J. schizocorona (Liede & Meve) Liede & Meve, J. streptantha (Malme) Liede & Meve, J. tarmensis (Schltr.) Liede & Meve, J. tiarata (Malme) Liede & Meve, J. trifurcata (Griseb.) Liede & Meve, and J. umbellata (Rusby) Liede & Meve. In Orthosia, the new combination O. angustifolia (Turcz.) Liede & Meve is made. Orthosia thymifolia Schltr. is excluded from the genus and the new combination Ditassa thymifolia (Schltr.) Liede & Meve (Metastelmatinae) is proposed. The genus Scyphostelma is reinstated, and 26 species, most previously in Cynanchum, are transferred: S. beckii (Morillo) Liede & Meve, S. bifida (Liede & Meve) Liede & Meve, S. brachyphylla (K. Schum.) Liede & Meve, S. carmenaemiliae (Morillo) Liede & Meve, S. chimboracensis (Morillo) Liede & Meve, S. confusa (R. W. Holm) Liede & Meve, S. ecuadorensis (Schltr.) Liede & Meve, S. filisepala (Standl.) Liede & Meve, S. harlingii (Morillo) Liede & Meve, S. intricata (K. Schum.) Liede & Meve, S. isidrensis (Morillo) Liede & Meve, S. lechleri (Morillo) Liede & Meve, S. longecalicina (Morillo) Liede & Meve, S. luteynii (Morillo) Liede & Meve, S. microphylla (Kunth) Liede & Meve, S. nubicola (Morillo) Liede & Meve, S. pichinchensis (K. Schum.) Liede & Meve, S. ruizteranii (Morillo) Liede & Meve, S. serpyllifolia (Kunth) Liede & Meve, S. siderocalyx (Morillo) Liede & Meve, S. sodiroi (K. Schum.) Liede & Meve, S. tenella (L. f.) Liede & Meve, S. trianae (Schltr.) Liede & Meve, S. veleziae (Morillo) Liede & Meve, S. velutina (Morillo) Liede & Meve, and S. wurdackii (Morillo) Liede & Meve. Ten names are lectotypified: C. ecuadorense Schltr., J. formosa, J. tarmensis, J. tiarata, J. trifurcata, J. umbellata, S. brachyphylla, S. ecuadorensis, S. intricata, and S. pichinchensis. Three names are neotypified: J. chlorantha (K. Schum.) Malme, S. sodiroi, and S. trianae.
We review the patterns of fruit maturation, dispersal, germination, seed bank formation, and seedling establishment of the Melastomataceae in two Neotropical biodiversity hotspots, the Brazilian cerrado and the Atlantic rainforest. Studies on seed biology of the Melastomataceae are relevant because this family is ubiquitous, species-rich, and dominant in these two hotspots, and its increased relative importance is anticipated under the current scenario of habitat loss and forest fragmentation. The life-history traits of this pioneer-dominated family are quite variable in terms of fruiting phenology and seedling establishment, but less so for dispersal ecology and seed germination. Our knowledge of this seed biology is used to infer on the predicted impacts of global change and forest fragmentation for tropical forest and cerrado melastomes. Species in the Melastomataceae may be key in restoration ecology, and we discuss how seed- and seedling-based restoration techniques can assist ecosystem recovery.
Revisamos los patrones de maturación de frutos, dispersión, germinación, banco de semillas y establecimiento de plantas de Melastomataceae en dos hotspots debiodiversdad, el cerrado y la Mata Atlántica. Estudios de semillas de Melastomataceae son importantes porque la familia presenta alta diversidad y es dominante en un gran rango de hábitats. Además, resulta que la familia tiene prevista su importancia aumentada en escenarios de fragmentación de bosques. Las características de história de vida de esta familia de plantas pioneras es muy variable con respecto a la fenología reproductiva y establecimiento de plántulas, pero no tanto con respecto a la ecología de dispersión de semillas y germinación. La biología de semillas embasa la discusión sobre los impactos de los cambios globales y fragmentación de bosques en Melastomataceae de sabanas y bosques tropicales. Especies de Melastomataceae pueden ser claves para la ecología de la restauración y discutimos como las técnicas de restauración basadas en semillas y plántulas pueden ayudar en la restauración.
The Neotropical species that have been included in Psychotria L. comprise a heterogeneous group, morphologically and systematically. Carapichea Aubl. (Rubiaceae, Psychotrieae) was separated from Psychotria based on molecular analyses to include C. affinis (Standl.) L. Andersson, C. guianensis Aubl., and C. ipecacuanha (Brot.) L. Andersson; two more species were later included based on morphological characters, C. ligularis (Rudge) Delprete and C. lucida J. G. Jardim & Zappi. Here Carapichea is reviewed morphologically and circumscribed to include 23 Neotropical species found from Nicaragua to southeastern Brazil that share characters of the stipules and inflorescence arrangement. The genus is diagnosed mainly by its distinctive stipules, while pyrene characters, previously considered characteristic for the genus, actually vary widely. A revised morphological description of the genus includes more variation than previously documented, which is outlined in the key to species. Seven informal species groups are separated and characterized, and the following new nomenclatural combinations are made here: Carapichea adinantha (Standl.) C. M. Taylor, based on Retiniphyllum adinanthum Standl. and the sole species of Stachyococcus Standl., which fully synonymizes Stachyococcus with Carapichea; Carapichea altsonii (Sandwith) C. M. Taylor, based on Cephaelis altsonii Sandwith; Carapichea araguariensis (Steyerm.) C. M. Taylor, based on P. araguariensis Steyerm.; Carapichea crebrinervia (Standl.) C. M. Taylor, based on Cephaelis crebrinervia Standl.; Carapichea fimbriflora (Steyerm.) C. M. Taylor, based on P. fimbriflora Steyerm.; Carapichea franquevilleana (Müll. Arg.) C. M. Taylor, based on P. franquevilleana Müll. Arg.; Carapichea klugii (Standl.) C. M. Taylor, based on P. klugii Standl.; Carapichea maturacensis (Steyerm.) C. M. Taylor, based on P. maturacensis Steyerm.; Carapichea necopinata (Standl.) C. M. Taylor, based on P. necopinata Standl.; Carapichea nivea (Sandwith) C. M. Taylor, based on Cephaelis nivea Sandwith; Carapichea pacimonica (Müll. Arg.) C. M. Taylor, based on P. pacimonica Müll. Arg.; Carapichea panurensis (Müll. Arg.) C. M. Taylor, based on Mapouria panurensis Müll. Arg.; Carapichea sandwithiana (Steyerm.) C. M. Taylor, based on Cephaelis sandwithiana Steyerm.; Carapichea tillettii (Steyerm.) C. M. Taylor, based on P. tillettii Steyerm.; Carapichea urniformis (Steyerm.) C. M. Taylor, based on P. urniformis Steyerm.; and Carapichea vasivensis (Müll. Arg.) C. M. Taylor, based on Mapouria vasivensis Müll. Arg. Newly described here is Carapichea verrucosa C. M. Taylor of Amazonian Peru, Colombia, and Brazil, which is notable for its relatively large, abaxially (i.e., dorsally) verrucose pyrenes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere