Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The taxonomic uncertainty surrounding several prominent genera of Australian microbat has been a long-standing impediment to research and conservation efforts on these groups. The free-tail bat genus Mormopterus is perhaps the most significant example, with a long history of acknowledged species-level confusion. This study uses a combined molecular and morphological approach to conduct a comprehensive assessment of species and subgeneric boundaries, between-species phylogenetic affinities and within-species phylogeographic structure in Australian members of Mormopterus. Phylogenetic analyses based on 759 base pairs of the NADH Dehydrogenase subunit 2 mitochondrial gene were concordant with species boundaries delineated using an expanded allozyme dataset and by phallic morphology, and also revealed strong phylogeographic structure within two species. The levels of divergence evident in the molecular and morphological analyses led us to recognise three subgenera within Australia: Micronomus, Setirostris subgen. nov. and Ozimops subgen. nov. Within Ozimops we recognise seven Australian species, three of which are new, and none are conspecific with Indo-Papuan species. The family Molossidae now comprises eleven species across three subgenera in Australia, making it the continent’s second most speciose family of bats.
Recent molecular and morphological analyses have shown that chiltoniid amphipods, once thought to be a relictual group, are a diverse and speciose family of Australian freshwater amphipods. As part of a larger examination of the family, chiltoniids from Kangaroo Island in South Australia were collected and analysed using molecular (COI and 28S) and morphological methods in order to understand species distributional patterns and relationships. Kartachiltonia moodyi gen. nov., sp. nov., a spring-associated species endemic to the island, was discovered and populations of three additional mainland species (Austrochiltonia australis, A. dalhousiensis and A. subtenuis) were examined. The island populations of A. australis, A. dalhousiensis and A. subtenuis were found to form natural groups with differing haplotype coalescence times dating from the Early to Mid-Pleistocene. Numerous cycles of regional climate change throughout the Pleistocene are likely to have driven speciation in chiltoniid amphipods in southern Australia and the presence of multiple chiltoniid species at Kangaroo Island indicates that it exists at a likely convergence of species distribution patterns. Three possible hypotheses to explain the evolution and diversity of chiltoniids in southern Australia are discussed as are evidence for potential introduction and long-distance dispersal events.
The uropygial gland is morphologically different in diverse bird species. This gland was macroscopically and microscopically examined in penguins, storm petrels and skuas. In all the studied species, the gland showed a connective tissue capsule and one papilla. A negative relationship was observed between the relative glandular mass and the body mass, being highest in petrels (small glands) and lowest in penguins (large glands). Birds that spend much time in water (penguins) have gland characteristics related to a continuous, but not stored, secretion, such as straight adenomers, the presence of abundant elastic fibres in the connective tissue and the absence of a primary storage chamber. Instead, birds that have less contact with water (storm petrels) have a gland with much more tortuous adenomers and a small primary storage chamber. The secretory cells showed a positive PAS reaction in all the glandular zones. Therefore, no differences could be seen between the sebaceous and glucogenic zones, as proposed in other birds. These results allow the conclusion that, in aquatic birds, there is no connection between the relative mass of the uropygial gland and the time in contact with water, though the differences found in the histological structure could be related to a different contact with the aquatic environment.
The western grey kangaroo, Macropus fuliginosus, is a large-bodied kangaroo that engages in pentapedal locomotion at low speeds and bipedal hopping at high speeds. The tail is thought to have functional roles in both of these modes of locomotion. In pentapedal locomotion the tail acts as a ‘fifth limb’ to support the body weight together with the forelimbs while the hind limbs are drawn forward. The tail has also been suggested to have a role as a counterbalance during bipedal hopping. On the basis of these functional roles for the tail in locomotion, the caudal musculature of the western grey kangaroo was dissected and described in this study. The arrangement of the caudal musculature showed particular adaptations for the role of the tail in both pentapedal locomotion and bipedal hopping.
Upstream migration of juvenile stages of temperate Australian amphidromous fish typically coincides with seasonally low river discharge when hydraulic (e.g. cascades) and physical (e.g. rock bars) barriers may be common. The ability to ‘climb’ or ‘jump’ may be expected to assist in negotiating low-flow barriers; however, it is presumed to be limited to a few native Australian freshwater fishes. Juvenile stages of Galaxias truttaceus Valenciennes, 1846 were observed ‘climbing’ and ‘jumping’ to successfully negotiate a low, vertical weir wall during their upstream recruitment migrations in south-western Australia. Based on this observation, we propose initial definitions for ‘climbing’ and ‘jumping’ to describe locomotory strategies employed by fishes to negotiate obstacles that would otherwise prevent free passage by normal swimming behaviour. Greater knowledge of the climbing, jumping and swimming performance, especially for small-bodied species and early life stages, will help improve the management of instream barriers for this critically endangered species and other freshwater fishes of southern Australia.
Spirurid nematodes (family Physalopteridae) are widespread as adults or as encysted larvae in many species of Australian reptiles. Fifteen species of physalopterine nematodes (subfamily Physalopterinae) in the genera Kreisiella, Abbreviata and Skrjabinoptera infect more than 40 species of reptile in the five families Agamidae, Varanidae, Gekkonidae, Scincidae and Elapidae. Four species of nematode are host-species specific, six are host-family specific to varanid lizards, and three to agamid lizards. Larger species of reptile support a higher prevalence and abundance of nematodes, and often support multiple infections with more than one species, with the potential for interspecific competition. Geographic distribution of nematodes is partially limited by host distribution, and by climatic factors, mainly precipitation and temperature. There are strong positive and negative associations between several pairs of nematodes. Two species of nematode with the most pronounced muscular development at the anterior end, Abbreviata tumidocapitis and Abbreviata glebopalmae, only occur concurrently, and in low numbers, with species of nematode without these morphological features, suggesting differences in feeding in the hosts’ stomachs. A combination of host specificity, geographic distribution and habitat, climatic factors and feeding organ morphology are factors that probably reduce the potential for interspecific competition. There is no evidence that concurrent infections affect either prevalence or abundance of nematodes, or cause discernible pathological changes to their hosts.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere