Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
This study documents the parasite assemblage of Liasis fuscus Peters, 1873 from the Adelaide River flood plain, Northern Territory, Australia. In total, nine species of helminth (comprising three cestodes and six nematodes), one pentastome and one protozoan were found in 180 water pythons, with the Nematoda being the dominant and most diverse group, and a cestode, Bothridium ornatum Maplestone & Southwell, 1923, the most prevalent species. In spite of the hosts being present in high numbers the helminth assemblage was depauperate, characterised by low prevalence, intensity, frequency and abundance of species, with neither season nor sex of host affecting abundance. There were, however, significant differences between ages of hosts, juveniles having fewer parasites, and seasonal diversity, with the wet season of 2004 and the dry of 2005 the most similar. Of the Australian python species analysed Morelia spilota (Lacépède, 1804) had the highest species richness. The lower species richness found in L. fuscus was possibly due to its unusual biology. Biogeographic relationships of the parasite fauna of L. fuscus are diverse, connections with Africa, Asia, and South America being noted.
Genetic diversity is a critical determinant of the persistence of populations because it enables animals to evolve and adapt to environmental change. Black-footed rock-wallabies (Petrogale lateralis MacDonnell Ranges race), or warru, once occupied virtually all suitable habitat within the arid zone of central Australia. However, only two metapopulations now remain in the southern portion of this race’s range (South Australia) and a recovery program has involved both in- and ex-situ conservation initiatives. To establish whether genetic factors such as inbreeding may be inhibiting population recovery, the current study examined the population structure and genetic diversity of animals in the three largest-known extant colonies using six polymorphic microsatellite loci. Bayesian and frequency-based assignment tests revealed substantial population structuring (pairwise FST values 0.122–0.278), congruent with geographically distinct colonies. There was some evidence of dispersal, with two migrants identified across two colonies, but little evidence for extensive interbreeding among colonies. Population substructure was evidenced by high values of FIS in one colony. All populations possessed relatively high levels of genetic diversity (allelic richness: 5.1–7.5, heterozygosity: 0.70–0.72). On the basis of a genetic analysis of parentage, approximately half of all males and females in the known metapopulations produced offspring. This has likely contributed to the retention of genetic diversity across colonies. These findings have implications for the management of both the in- and ex-situ warru populations.
The long-nosed (or New Zealand) fur seal (Arctocephalus forsteri) breeds in southern Australia and New Zealand. Most of the Australian population is in South Australia, between Kangaroo Island and Eyre Peninsula. Fur seal populations in southern Australia were heavily exploited by colonial sealers between 1801 and 1830, resulting in major reductions. Numbers remained low for 150 years, then slowly built up and new colonies established across their presumed former range. Here we present estimates of pup abundance at South Australia colonies, mostly during the 2013–14 breeding season.
Long-nosed fur seals bred from Baudin Rocks in the south-east to Fenelon Island in the north-west. In total, 29 breeding colonies produced 20 431 pups, 3.6 times greater than the 1989–90 estimate; the increase is attributed to recovery from 19th century overharvesting. The 2013–14 pup estimate leads to an estimate of abundance of long-nosed fur seals in South Australia of 97 200.
Most pups were on Kangaroo Island (49.6%) and the Neptune Islands (38.6%). New breeding colonies were identified on Williams Island and at two small sites on Kangaroo Island. The increasing trend in South Australia is likely to continue over the coming decade, primarily by expansion in colonies on Kangaroo Island and by establishment of new colonies.
The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A T content of 56.3%, which is similar to that of other squamate lizard genomes.
Transport and processing of allochthonous material is crucial for trophic pathways in headwater streams. Freshwater crayfish are known to affect and exploit the break-down of in-stream terrestrial plant material into detritus. We recorded Euastacus armatus (Murray River crayfish) individuals feeding on discrete patches of allochthonous material within an unregulated section of the Goodradigbee River, an upland stream in temperate Australia. Despite suggestions of aggressive territoriality, E. armatus were observed by remote and manual underwater filming to feed in non-aggressive aggregations on these piles of fine woody debris and leaf litter. On the basis of observations of 25 individuals found in the vicinity of the allochthonous patches, this population comprised mostly female individuals at smaller sizes of maturity than has been recorded for lowland populations of E. armatus. Our study confirms the importance of concentrated allochthonous food patches for detritivores, and points to the important trophic linkage between terrestrial and aquatic ecosystems via a widespread and iconic freshwater invertebrate. Moreover, these non-aggressive feeding aggregations of E. armatus challenge notions of aggression in this species that have been developed in small-scale aquarium studies.
We characterised a set of nine polymorphic microsatellite loci for Pleistodontes imperialis sp. 1, the pollinator wasp of Port Jackson fig (Ficus rubiginosa) in south-eastern Australia. Characterisation was performed on 30 female individuals collected from a population in Sydney, Australia. The average number of alleles per locus was 7.33, and eight loci were not in Hardy–Weinberg equilibrium. This was expected as fig wasps are known to be highly inbred. A test of genetic differentiation between two natural populations of P. imperialis sp. 1 (Sydney and Newcastle, Australia – some 120 km apart) yielded a very low FST value of 0.012, suggesting considerable gene flow. Bayesian clustering analysis using TESS 2.3.1, which does not assume Hardy–Weinberg equilibrium, however, indicated potential spatial substructuring between the Sydney and Newcastle populations, as well as within the Sydney population. The described loci were also characterised for two other species in the P. imperialis complex: P. imperialis sp. 2 (Townsville, Australia) and P. imperialis sp. 4 (Brisbane, Australia). Seven and six of the nine loci were polymorphic for P. imperialis sp. 2 and P. imperialis sp. 4, respectively.
Westralunio carteri is the only species of freshwater mussel found in south-western Australia and, owing to a lack of comprehensive information on its ecology, its conservation status has been speculative. To more accurately predict the true conservation status of this species, the historical and contemporary distributional records were modelled with environmental data that identified salinity, perenniality and total nitrogen as variables responsible for limiting the species’ current extent of occurrence, inferring threatening processes. The species was found to have undergone a 49% reduction in extent of occurrence in less than three generations, due primarily to secondary salinisation. Current distribution is bounded by Gingin Brook in the north to the Kent, Goodga and Waychinicup Rivers in the South, within 50–100 km of coastal south-western Australia. Field observations indicated that W. carteri was almost never found at sites where mean salinity was >1.6 g L–1. This was corroborated by laboratory tolerance trials that showed that W. carteri has an acute salinity tolerance (LD50) of 1.6–3.0 g L–1. Application of IUCN Red List criteria indicates that W. carteri qualifies for listing as vulnerable. Conservation management measures should focus on maintaining existing populations.
Describing the spatial requirements of animals is central to understanding their ecology and conservation needs. I reviewed 115 studies describing the home ranges of Australian terrestrial vertebrates that were published during 2001–12. Understanding the features that characterise best practice can guide future studies. I aimed to: evaluate the adequacy of these studies, examine the use of current analysis techniques, examine the application of home-range knowledge to species’ management, and examine hypotheses that seek to explain the size and location of home ranges. The reviewed studies were unevenly distributed across taxa with a majority (68%) involving mammals compared with birds (12%), reptiles (19%) and frogs (1%). Many studies had various shortcomings, suggesting that they had not fully described home ranges; many (41%) involved 10 or fewer individuals, ≤50 locations per individual (44%), and spanned periods of ≤3 months (46%). Studies of short duration risk underestimating home-range area and overlooking seasonal habitat use. Global positioning system telemetry was used in 10% of Australian studies. Many were also of short duration. Despite frequent criticism in the literature, the Minimum Convex Polygon was the most frequently used home-range estimator (84% of studies), followed by the Fixed Kernel (45% of studies). Applying knowledge of home ranges appears to be underappreciated, with only 39% of studies explicitly aiming to address management or conservation issues. Only three studies tested hypotheses that may explain home-range characteristics. Resource (food and shelter) distribution and, in one case, its heterogeneity, shaped home-range characteristics. I found that most studies use the term ‘home range’ in an indiscriminate way. Only 11% of studies within the international literature used qualifying terms (e.g. seasonal, annual). Tracking period is shown to influence home-range estimates. Therefore, I recommend that qualifying terms be used more frequently to avoid confusion when referring to animal home ranges.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere