Elisa E. Sparrow, Michael H. Parsons, Daniel T. Blumstein
Australian Journal of Zoology 64 (3), 192-197, (23 August 2016) https://doi.org/10.1071/ZO15068
KEYWORDS: abundant species management, Canis dingo, human–wildlife conflict, kairomones, Lasiorhinus latifrons, non-invasive deterrents, predator urine, southern hairy-nosed wombat
Southern hairy-nosed wombats (Lasiorhinus latifrons) are fossorial marsupials that live in large burrow systems where their digging behaviour brings them into conflict with agriculture. In the absence of any available control options, non-selective culling is the primary mode of wombat management. This approach is contentious and has unknown implications for long-term wombat conservation. Predator scents, however, have been effective in altering behaviours of some herbivores and may offer a non-lethal alternative to culling if they discourage wombats from burrowing in perceived problem areas. Therefore, we trialled two dingo scents (faeces, urine) over 75 days to determine whether these scents would deter wombats from repopulating collapsed burrows. Ten inhabited single-entrance burrows were excavated over three days (to allow time for inhabitants to exit), collapsed and then filled in. Five burrows, separated by at least 200 m, were used for dingo scent treatments (three urine; two faeces) and three burrows, separated by the same distance, served as negative controls (unscented), along with two ‘farmer-monitored’ active controls (dog urine and a dingo carcass). We used a rank-sum score to assess wombat activity: scratching was scored with a value of (1), digging (2), and recolonisation (5), with each value reflecting total energy and time spent in the vicinity of the treatment. We fitted Generalised Estimating Equations (repeated-measures, Fisher Method) to explain variation within, and across, treatment and control burrows. Within 20 days, all 10 sites had signs of wombat activity that ranged from fresh digging, to fully functional burrows. Among the five treatment sites, scratching and tracks identified wombats as being present, but they did not dig. After 75 days, the five sites treated with dingo scents had minimal activity and no new burrows, while wombats recolonised all control burrows. Though we used only 10 burrows for this preliminary study, our findings suggest the need for further testing of dingo scents as a tool for dissuading wombats from digging and recolonisation of collapsed burrows. This represents a novel use for a predator scent, in that prey may remain in the vicinity near the deterrent, but curb problematic behaviours of economic consequence.