Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Understanding how emerging viruses persist in bat populations is a fundamental step to understand the processes by which viruses are transmitted from reservoir hosts to spillover hosts. Hendra virus, which has caused fatal infections in horses and humans in eastern Australia since 1994, spills over from its natural reservoir hosts, Pteropus bats (colloquially known as flying foxes). It has been suggested that the Hendra virus maintenance mechanism in the bat populations might be implicated with their metapopulation structure. Here, we examine whether a metapopulation consisting of black flying fox (P. alecto) colonies that are smaller than the critical community size can maintain the Hendra virus. By using the Gillespie algorithm, stochastic mathematical models were used to simulate a cycle, in which viral extinction and recolonisation were repeated in a single colony within a metapopulation. Given estimated flying fox immigration rates, the simulation results showed that recolonisation occurred more frequently than extinction, which indicated that infection would not go extinct in the metapopulation. Consequently, this study suggests that a collection of transient epidemics of Hendra virus in numerous colonies of flying foxes in Australia can support the long-term persistence of the virus at the metapopulation level.
Egg inviability at oviposition is a possible explanation for the high rate of early-stage embryo death of eggs laid by green turtles at Raine Island, the largest green turtle nesting aggregation in the world. We tested this possibility by assessing egg viability of freshly laid eggs. We found that green turtle eggs laid at Raine Island have high viability at their time of laying, and that there was no relationship between egg viability and early-stage embryo death or hatching success within a clutch. Hence, the inviable egg at oviposition hypothesis cannot explain the high death rate of early-stage embryos that is characteristic of green turtle clutches laid at Raine Island.
The loss of hollow-bearing trees is a key threat for many hollow-dependent taxa. Nesting boxes have been widely used to offset tree hollow loss, but they have high rates of attrition, and, often, low rates of usage by target species. To counter these problems, chainsaw carved hollows (artificial cavities cut into trees) have become a popular alternative, yet little research has been published on their effectiveness. We examined the usage of 150 chainsaw carved hollows by cavity-dependent fauna in the central west of New South Wales using observations from traditional inspection methods and remote cameras. Between October 2017 and April 2019, we detected 21 species of vertebrates (two reptile, one amphibian, 10 bird, and eight mammal species) inside chainsaw carved hollows, but the number of species detected was dependent on the chosen monitoring method. We detected six species inside hollows during physical inspections, whereas remote cameras detected 21 species entering hollows. Cameras detected eight species using hollows as breeding sites, whereas physical inspections detected just four species. Cameras detected two threatened mammals (squirrel glider (Petaurus norfolcensis) and greater glider (Petauroides volans)) raising young inside hollows, yet we failed to detect these species during physical inspections. For birds, the two methods yielded equivalent results for detection of breeding events. Overall, our study showed that few cavity-dependent species used chainsaw carved hollows as breeding sites. This highlights how artificial hollows are not a substitute for retaining naturally occurring hollows in large trees and revegetation programs.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere