Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumption. The first arrest occurs at the G2 (germinal vesicle) stage and meiosis resumption is stimulated by a gonadotropin surge; the second arrest takes place at the metaphase II stage, the stage from which it is released when fertilization takes place. The maturation-promoting factor, which consists of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1), is responsible for regulating meiotic resumption and progression, while CDK1 is the unique CDK that acts as the catalytic subunit of maturation-promoting factor. Recent studies showed that except for cyclin B1, multiple cyclins interact with CDK1 to form complexes, which are involved in the regulation of meiotic progression at different stages. Here, we review and discuss the control of oocyte meiotic progression by cyclins A1, A2, B1, B2, B3, and O.
Vera A. van der Weijden, Brina Puntar, Alba Rudolf Vegas, Vladimir Milojevic, Corina I. Schanzenbach, Mariusz P. Kowalewski, Barbara Drews, Susanne E. Ulbrich
Numerous intrauterine changes take place across species during embryo development. Following fertilization in July/August, the European roe deer (Capreolus capreolus) embryo undergoes diapause until embryonic elongation in December/January. Embryonic elongation prior to implantation is a common feature among ungulates. Unlike many other ruminants, the roe deer embryo does not secrete interferon-tau (IFNτ). This provides the unique opportunity to unravel IFNτindependent signaling pathways associated with maternal recognition of pregnancy (MRP). This study aimed at identifying the cell-type–specific endometrial gene expression changes associated with the MRP at the time of embryo elongation that are independent of IFNτ in roe deer. The messenger RNA (mRNA) expression of genes known to be involved in embryo–maternal communication in cattle, pig, sheep, and mice was analyzed in laser capture microdissected (LMD) endometrial luminal, glandular epithelial, as well as stromal cells. The mRNA transcript abundances of the estrogen (ESR1), progesterone receptor (PGR), and IFNτ-stimulated genes were lower in the luminal epithelium in the presence of an elongated embryo compared to diapause. Retinol Binding Protein-4 (RBP4), a key factor involved in placentation, was more abundant in the luminal epithelium in the presence of an elongated embryo. The progesterone receptor localization was visualized by immunohistochemistry, showing an absence in the luminal epithelium and an overall lower abundance with time and thus prolonged progesterone exposure. Our data show a developmental stage-specific mRNA expression pattern in the luminal epithelium, indicating that these cells sense the presence of an elongated embryo in an IFNτ-independent manner.
Summary Sentence
Cell-type–specific gene expression analysis shows that luminal epithelium cells sense embryo elongation in the roe deer.
Katrin Gegenfurtner, Thomas Fröhlich, Miwako Kösters, Pascal Mermillod, Yann Locatelli, Sébastien Fritz, P. Salvetti, Niamh Forde, Patrick Lonergan, Eckhard Wolf, Georg J. Arnold
The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.
Summary Sentence
Protein composition of oviduct fluid—the natural environment for the early embryo—depends on metabolic status and genetic predisposition of dairy cows, affecting, among others, proteins related to immune response.
Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial–blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.
Summary Sentence
Estradiol and progesterone influence distinct aspects of felid endometrial cell organization in vitro, but they are not sufficient to support expression of decidualization-related genes.
Pelvic organ prolapse (POP) in lysyl oxidase like-1 knockout (Loxl1 KO) mice occurs primarily in parous mice and is rare in nulliparous mice. We determined the effect of Loxl1 deficiency on postpartum regulation of connective tissue metabolism genes and degradative enzyme activity in the vagina at 20 days gestation or 4 h, 48 h, 7 days, 15 days, 25 days, 7 weeks, or 12 weeks postpartum. Nulliparous Loxl1 KO and wildtype (WT) mice aged 11, 18, or 23 weeks were controls. Gene expression and enzyme activity were assessed using real-time quantitative reverse transcription PCR and fluorescein conjugated gelatin zymography, respectively. Parity, but not aging, had a significant influence on gene expression both with time postpartum and between KO and WT mice. Mmp2, Timp1, Timp2, Timp3, Timp4, Col1a1, Col3a1, Acta2, and Bmp1 were differentially expressed between KO and WT mice. Correlational analysis of gene-gene pairs revealed 10 significant differences between parous KO and WT groups, 5 of which were due to lack of co-expression of Bmp1 in KO mice. The overall enzyme activity that could be attributed to MMPs was significantly higher in WT compared to KO mice both 25 days and 12 weeks postpartum, and MMP activity was significantly lower 15 days and 25 days postpartum compared to KO nulliparous controls, but not WT. These findings suggest that Loxl1 deficiency combined with parity has a significant impact on postpartum regulation of connective tissue metabolism, particularly as it relates to co-expression of Bmp1 and altered proteolytic activity.
Summary Sentence
Loxl1 deficiency combined with parity has a significant impact on regulation of connective tissue metabolism in the vagina during puerperium, particularly as it relates to the co-expression of genes with Bmp1.
Endometriosis is a major health issue among women of reproductive age. However, its etiology has not yet been completely understood. We investigated 10 single nucleotide polymorphisms from six novel nucleotide excision repair genes and the susceptibility to endometriosis. A total of 153 patients with endometriosis were recruited during 2000–2010 from central Taiwan. Pathological confirmation was necessary for all patients, and exclusion criteria included the presence of leiomyoma, adenomyosis, or cancer of the uterine, cervix, or ovary and a prescription of hormone therapy. Furthermore, a total of 636 age-matched individuals without endometriosis were recruited during the same time period from central Taiwan. The polymerase chain reaction coupled with restriction fragment length polymorphism methodology was applied for genotyping. The multivariate logistic regression analysis showed that subjects carrying the ERCC1 rs11615 TT (OR = 2.04, 95% CI = 1.36–3.41), ERCC2 rs1799793 AA (OR = 1.86, 95% CI = 1.14–3.11), and ERCC6 rs2228528 AA genotypes (OR = 1.79, 95% CI = 1.13–2.83) exhibited significantly increased risks of developing endometriosis compared with their counterparts carrying the wild-type genotypes. This study suggests that certain single nucleotide polymorphisms of nucleotide excision repair genes excision repair cross-complementation group 1 (ERCC1, ERCC2, and ERCC6) predispose women to the development of endometriosis.
Summary Sentence
Genetic variants in the nucleotide excision repair genes, such as ERCC1, ERCC2, and ERCC6, may contribute to the development of endometriosis.
Mammalian oocytes and eggs are transcriptionally quiescent and depend on post-transcriptional mechanisms for proper maturation. Post-transcriptional mRNA modifications comprise an important regulatory mechanism that can alter protein and miRNA recognition sites, splicing, stability, secondary structure, and protein coding. We discovered that fully grown mouse germinal vesicle oocytes and metaphase II eggs display abundant inosine mRNA modifications compared to growing oocytes from postnatal day 12 oocytes. These inosines were enriched in mRNA protein coding regions (CDS) and specifically located at the third codon base, or wobble position. Inosines, observed at lower frequencies in CDS of somatic tissues, were similarly enriched at the codon wobble position. In oocytes and eggs, inosine modifications lead primarily to synonymous changes in mRNA transcripts. Inosines may ultimately affect maternal mRNA stability by changing codon usage, thereby altering translational efficiency and translationally coupled mRNA degradation. These important observations advance our understanding of post-transcriptional mechanisms contributing to mammalian oocyte maturation.
Summary Sentence
Inosine mRNA modifications in germinal vesicle oocytes and MII eggs alter codon composition and may affect translational efficiency and translationally coupled mRNA degradation.
To test the hypothesis that changes in alpha-7 nicotinic acetylcholine receptor (α7nAChR) expression on macrophages and macrophage polarization participate in cervical remodeling during normal pregnancy, pregnant rats from gestational days (GDs) 14, 16, 18, 20, and 22 were used in the present study. The expression of α7nAChR on macrophages and the numbers of M1 and M2 macrophages were detected by double immunofluorescence staining. The levels of α7nAChR and collagens were detected by western blotting. M1 markers (inducible nitric oxide synthase and inflammatory cytokines) and M2 markers (arginase 1, anti-inflammatory cytokines) were detected to evaluate the macrophage polarization state by immunohistochemistry staining, western blotting, and the enzyme-linked immunosorbent assay. Matrix metalloproteinase 9 (MMP-9) expression was determined by immunohistochemistry staining and western blotting. We found that the α7nAChR expression on macrophages significantly decreased on GD22 compared to GDs 14, 16, 18, and 20. There was an increased number of M1 macrophages and decreased number of M2 macrophages in late pregnancy. The expression of M1 macrophage biomarkers was much higher on GDs 20 and 22 than on GDs 14, 16, and 18, but expression of M2 biomarkers decreased on GDs 20 and 22 compared to GDs 14, 16, and 18. MMP-9 expression was higher on GD22 than on GDs 14, 16, 18, and 20, and collagen expression significantly decreased on GDs 18, 20, and 22 compared to GD14. Our results indicated that the decreased expression of α7nAChR and increased number of M1 macrophages are associated with cervical remodeling.
Summary Sentence
The decrease in α7nAChR expression contributes to cervical ripening in late pregnant rats without infection, possibly by inducing M1 macrophage polarization and inflammatory responses.
Lauren E Carter, David P Cook, Olga Collins, Lisa F Gamwell, Holly A Dempster, Howard W Wong, Curtis W McCloskey, Ken Garson, Nhung H Vuong, Barbara C Vanderhyden
The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFβ1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFβ1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFβ1 induced an EMT mediated by TGFβRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFβ1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFβ signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFβ1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFβ1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFβ1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFβ1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.
Summary sentence
COX2 increases epithelial cell survival under the stress conditions observed during ovulatory wound repair, therefore promoting survival in cells that might otherwise undergo apoptosis due to the accumulation of DNA damage present at ovulation.
Oxidative stress induces granulosa cell (GC) apoptosis and subsequent follicular atresia. Since our previous studies indicate that microRNA-181a (miR-181a) expression is increased in GCs undergoing apoptosis, the present study was designed to define the relationship between exposure to oxidative stressors in GCs and changes in miR-181a expression and function. To achieve this, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. We demonstrated that in vitro miR-181a overexpression promoted GC apoptosis in a dose-dependent manner; sphingosine-1-phosphate (S1P) significantly reversed both H2O2-induced and miR-181a-induced apoptosis in GCs. Moreover, we identified sphingosine-1-phosphate receptor 1 (S1PR1), a critical receptor of S1P, as a novel target of miR-181a in GCs. MicroRNA-181a induced GC apoptosis by repressing S1PR1 expression in vitro. Importantly, increased miR-181a expression and decreased S1PR1 expression were detected in the in vivo ovarian oxidative stress model by Western blot analysis and immunohistochemistry. Furthermore, we found similar expression patterns of miR-181a and S1PR1 in GCs from patients with premature ovarian insufficiency. In conclusion, our results suggest that miR-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.
Summary sentence
MicroRNA-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.
SALL1 and SALL3 are transcription factors that play an essential role in regulating developmental processes and organogenesis in many species. However, the functional role of SALL1 and SALL3 in chicken prehierarchical follicle development is unknown. This study aimed to explore the potential role and mechanism of csal1 and csal3 in granulosa cell proliferation, differentiation, and follicle selection within the prehierarchical follicles of hen ovary. Our data demonstrated that the csal1 and csal3 transcriptions were highly expressed in granulosa cells of prehierarchical follicles, and their proteins were mainly localized in the cytoplasm of granulosa cells and oocytes as well as in the ovarian stroma and epithelium. It initially revealed that both csal1 and csal3 may be involved in chicken prehierarchical follicle development via a translocation mechanism. Furthermore, our results showed an abundance of CCND1, Bcat, StAR, CYP11A1, and FSHR mRNA in granulosa cells, and the proliferation levels of granulosa cells from the prehierarchical follicles were significantly increased by siRNA-mediated knockdown of csal1 or/and csal3. Conversely, the overexpression of csal1 or/and csal3 in the granulosa cells led to a remarkably decreased of them. Moreover, csal1 and csal3 together exert a much stronger effect on the regulation than any of csal1 or csal3. These results indicated that csal1 and csal3 play synergistic inhibitory roles on granulosa cell proliferation, differentiation, and steroidogenesis during prehierarchical follicle development in vitro. The current data provide a basis of molecular mechanisms of csal1 and csal3 in controlling the prehierarchical follicle development and growth of hen ovary in vivo.
Summary Sentence
The transcription factors csal1 and csal3 might play a synergistic inhibitory role on granulosa cell proliferation, differentiation, and steroidogenesis during PF development.
Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.
Summary Sentence
Hippo pathway transcription coactivators YAP1/TAZ play an important role in bovine granulosa cell proliferation and estradiol synthesis.
Objective: Oxidative stress (OS)-induced stress signaler p38 mitogen-activated protein kinase (p38MAPK) activation and fetal membrane senescence are associated with parturition. This study determined changes in glycogen synthase kinase 3 beta (GSK3β) and its regulation by p38MAPK in effecting senescence to further delineate the molecular mechanism involved in senescence. Methods: Primary human amnion epithelial cells and amnion mesenchymal cells were treated with cigarette smoke extract (CSE, OS inducer). Expression of total and phosphorylated GSK3β and p38MAPK, and that of GSK3β's downstream targets: beta-catenin (β-Cat) and nuclear factor erythroid 2-related factor 2 (Nrf2) (western blot analysis), cell cycle regulation and senescence (flow cytometry) were determined. The specificity of GSK3β and p38MAPK's mechanistic role was tested by co-treating cells with their respective inhibitors, CHIR99021 and SB203580. Exosomal secretion of β-Cat from OS-induced cells was confirmed by immunofluorescence confocal microscopy and western blot.
Results: OS induced by CSE resulted in phosphorylation of GSK3β (inactivation) and p38MAPK (activation) that was associated with cell cycle arrest and senescence. Inhibitors to GSK3β and p38MAPK verified their roles. Glycogen synthase kinase 3 beta inactivation was associated with nuclear translocation of antioxidant Nrf2 and exosomal secretion of β-Cat.
Conclusions: OS-induced P-p38MAPK activation is associated with functional downregulation of GSK3β and arrest of cell cycle progression and senescence of amnion cells. Lack of nuclear translocation of β-Cat and its excretion via exosomes further supports the postulation that GSK3β down-regulation by p38MAPK may stop cell proliferation preceding cell senescence. A better understanding of molecular mechanisms of senescence will help develop therapeutic strategies to prevent preterm birth.
Summary Sentence
OS causes activation of p38MAPK that can inactivate GSK3? to promote senescence of human amnion cells.
Preterm labor (PTL) is the predominant cause of childhood morbidity and mortality. It has several phenotypes, each with a distinct etiology often involving inflammation. Here, in samples of reproductive tissues obtained in early PTL from women with phenotypically defined PTL, we examined the presence and distribution of inflammation and its relationship with prolabor gene expression. In chorioamnionitis (CA-PTL), cytokine protein concentrations were increased across all tissues; in idiopathic (I-PTL), the inflammatory changes were limited to the choriodecidua; inflammation was not a feature of placental abruption (PA-PTL). CA-PTL was associated with activation of p65 in the myometrium and AP-1 in the choriodecidua, and PA-PTL with CREB in the choriodecidua. In the myometrium, PGHS-2 mRNA level was increased in CA- and I-PTL; in the amnion, PGHS-2 mRNA level was higher in PA- and I-PTL, while in CA-PTL, OT, OTR mRNA, and CX-43 expression were increased. In the choriodecidua, PGHS-2 mRNA level was unchanged, but in CA and I-PTL, OT mRNA level were increased and OTR was reduced. These data show that CA-PTL is associated with widespread inflammation and prolabor gene expression. In contrast, in I-PTL, inflammation is limited to the choriodecidua, with discrete increases in PGHS-2 in the amnion and OT in the choriodecidua. Inflammation is not a feature of PA-PTL, which is associated with increased OT and OTR in the amnion.
Summary Sentence
These data show distinct patterns of gene expression in different types of PTL and, consequently, have important implications for both therapy and our understanding of PTL etiology.
Maternal inflammation (MI) is associated with many adverse perinatal outcomes. The placenta plays a vital role in mediating maternal-fetal resource allocation. Studies have shown that MI contributes to placental dysfunction, which then leads to adverse birth outcomes and high health risks throughout childhood. Placental mammalian target of rapamycin complex 1 (mTORC1) signaling pathway links maternal nutrient availability to fetal growth; however, the impact of MI on mTORC1 signaling in the placenta remains unclear. In this study, we sought to explore the changes of mTORC1 signaling in the mouse placenta at late gestation by using two models of MI employing lipopolysaccharide (LPS) and interleukin-1β (IL-1β) to mimic acute (aMI) and sub-chronic (cMI) inflammatory states, respectively. We determined placental mTORC1 activity by measuring the activity of mTORC1 downstream molecules, including S6k, 4Ebp1, and rpS6. In the aMI model, we found that mTORC1 activity was significantly decreased in the placental decidual and junctional zone at 2 and 6 h after LPS surgery, respectively; however, mTORC1 activity was significantly increased in the placental labyrinth zone at 2, 6, and 24 h after LPS treatment, respectively. In the cMI model, we observed that mTORC1 activity was increased only in the placental labyrinth zone after consecutive IL-1β exposure. Our study reveals that different parts of the mouse placenta react differently to MI, leading to variable mTORC1 activity throughout the placenta. This suggests that different downstream molecules of mTORC1 from different parts of the mouse placenta may be used in clinical research to monitor the fetal well-being during MI.
Summary Sentence
The downstream molecules of mTORC1 may be used as sensitive biomarkers to monitor fetal well-being after exposure to maternal inflammation.
Procaine directly triggers pH-dependent cytokinesis in equine oocytes and induces hypermotility in stallion spermatozoa, an important event during capacitation. However, procaine-induced hyperactivated motility is abolished when sperm is washed to remove the procaine prior to sperm-oocyte co-incubation. To understand how procaine exerts its effects, the external Ca2+ and Na+ and weak base activity dependency of procaine-induced hyperactivation in stallion spermatozoa was assessed using computer-assisted sperm analysis. Percoll-washed stallion spermatozoa exposed to Ca2+-depleted (+2 mM EGTA) procaine-supplemented capacitating medium (CM) still demonstrated hyperactivated motility, whereas CM without NaCl or Na+ did not. Both procaine and NH4Cl, another weak base, were shown to trigger a cytoplasmic pH increase (BCECF-acetoxymethyl (AM)), which is primarily induced by a pH rise in acidic cell organelles (Lysosensor green dnd-189), accompanied by hypermotility in stallion sperm. As for procaine, 25 mM NH4Cl also induced oocyte cytokinesis. Interestingly, hyperactivated motility was reliably induced by 2.5–10 mM procaine, whereas a significant cytoplasmic cAMP increase and tail-associated protein tyrosine phosphorylation were only observed at 10 mM. Moreover, 25 mM NH4Cl did not support the latter capacitation characteristics. Additionally, cAMP levels were more than 10× higher in boar than stallion sperm incubated under similar capacitating conditions. Finally, stallion sperm preincubated with 10 mM procaine did not fertilize equine oocytes. In conclusion, 10 mM procaine causes a cytoplasmic and acidic sperm cell organelle pH rise that simultaneously induces hyperactivated motility, increased levels of cAMP and tail-associated protein tyrosine phosphorylation in stallion spermatozoa. However, procaine-induced hypermotility is independent of the cAMP/protein tyrosine phosphorylation pathway.
Summary Sentence
Procaine induces cAMP dependent tail-associated protein tyrosine phosphorylation in stallion spermatozoa at 10 mM as a result of its weak base activity, whereas hypermotility is induced over a much broader concentration range namely, 2.5–10 mM.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere