Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Exposures to adverse conditions in utero can lead to permanent changes in the structure and function of key physiological systems in the developing fetus, increasing the risk of disease and premature aging in later postnatal life. When considering the systems that could be affected by an adverse gestational environment, the reproductive system of developing female offspring may be particularly important, as changes have the potential to alter both reproductive capacity of the first generation, as well as health of the second generation through changes in the oocyte. The aim of this review is to examine the impact of different adverse intrauterine conditions on the reproductive system of the female offspring. It focuses on the effects of exposure to maternal undernutrition, overnutrition/obesity, hypoxia, smoking, steroid excess, endocrine-disrupting chemicals, and pollutants during gestation and draws on data from human and animal studies to illuminate underlying mechanisms. The available data indeed indicate that adverse gestational environments alter the reproductive physiology of female offspring with consequences for future reproductive capacity. These alterations are mediated via programmed changes in the hypothalamic–pituitary–gonadal axis and the structure and function of reproductive tissues, particularly the ovaries. Reproductive programming may be observed as a change in the timing of puberty onset and menopause/reproductive decline, altered menstrual/estrous cycles, polycystic ovaries, and elevated risk of reproductive tissue cancers. These reproductive outcomes can affect the fertility and fecundity of the female offspring; however, further work is needed to better define the possible impact of these programmed changes on subsequent generations.
Summary sentence
Explores the extent to which different environmental exposures during gestation impact the reproductive physiology of female offspring by drawing on data from human and experimental animal studies to illuminate underlying mechanisms.
Endometrial receptivity and embryo implantation processes are a major point of pregnancy failure in many mammalian species, including humans. Although reproductive biology in many carnivore species remains enigmatic, the few that have been studied so far are invaluable comparative models. The goals of this review are to (1) summarize current data on the mechanisms involved in uterine receptivity and embryo implantation in carnivores, including commonalities and differences with other mammalian species and (2) identify research priorities to better understand a key phenomenon in a critical group of mammals. Besides unique reproductive traits in some carnivores (induced vs. spontaneous ovulation in cats, ovulation at the germinal vesicle stage in dogs), preimplantation embryo development is comparable with other orders. However, the timing of implantation varies, especially in species having an embryonic diapause. Mechanisms involved in endometrial receptivity and decidualization still remain to be fully understood, but specific markers have already been identified. Importantly, the use of endogenous hormones to control the ovarian activity may impact endometrial receptivity and subsequent embryo implantation. Next, research efforts should take advantage of advanced technologies to further study embryo implantation in carnivores and to provide more relevant models to reproductive medicine or for the conservation of rare and endangered species.
Summary sentence
The goals of this review are to (1) summarize current data on the mechanisms involved in uterine receptivity and embryo implantation in carnivores and (2) identify research priorities to better understand a key phenomenon in a critical group of mammals.
Oocyte mitochondria are unique organelles that establish a founder population in primordial germ cells (PGCs). As the oocyte matures in the postnatal mammalian ovary during folliculogenesis it increases exponentially in volume, and the oocyte mitochondria population proliferates to about 100 000 mitochondria per healthy, mature murine oocyte. The health of the mature oocyte and subsequent embryo is highly dependent on the oocyte mitochondria. Mitochondria are especially sensitive to toxic insults, as they are a major source of reactive oxygen species (ROS), they contain their own DNA (mtDNA) that is unprotected by histone proteins, they contain the electron transport chain that uses electron donors, including oxygen, to generate ATP, and they are important sensors for overall cellular stress. Here we review the effects that toxic insults including chemotherapeutics, toxic metals, plasticizers, pesticides, polycyclic aromatic hydrocarbons (PAHs), and ionizing radiation can have on oocyte mitochondria. This is very clearly a burgeoning field, as our understanding of oocyte mitochondria and metabolism is still relatively new, and we contend much more research is needed to understand the detrimental impacts of exposure to toxicants on oocyte mitochondria. Developing this field further can benefit our understanding of assisted reproductive technologies and the developmental origins of health and disease (DOHaD).
Summary sentence Oocyte mitochondria are unique organelles, which are sensitive targets to various toxicants.
The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.
Summary sentence: Development of an innovative technique coupling ultrasound biomicroscopy, guided puncture, and nuclear magnetic resonance to characterize the in vivo uterine and blastocoelic microenvironment of the peri-implantation rabbit embryo.
Phthalates are a group of chemicals used as additives in various consumer products, medical equipment, and personal care products. Phthalates and their metabolites are consistently detected in humans, indicating widespread and continuous exposure to multiple phthalates. Thus, environmentally relevant mixtures of phthalates and phthalate metabolites were investigated to determine the effects of phthalates on the function of the ovary during the neonatal period of development. Neonatal ovaries from CD-1 mice were cultured with dimethyl sulphoxide (DMSO; vehicle control), phthalate mixture (0.1–100 µg/mL), or phthalate metabolite mixture (0.1–100 µg/mL). The phthalate mixture was composed of 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The phthalate metabolite mixture was composed of 37% monoethyl phthalate, 19% mono(2-ethylhexyl) phthalate, 15% monobutyl phthalate, 10% monoisononyl phthalate, 10% monoisobutyl phthalate, and 8% monobenzyl phthalate. After 96 h of culture, ovaries were harvested for histological analysis of folliculogenesis, gene expression analysis of cell cycle and apoptosis regulators, and immune staining for cell proliferation and apoptosis. The metabolite mixture significantly decreased the number and percentage of abnormal follicles (100 µg/mL) compared to controls. The metabolite mixture also significantly increased the expression of cell cycle inhibitors (100 µg/mL) and the antiapoptotic factor Bcl2l10 (10 µg/mL) compared to controls. The phthalate mixture did not significantly alter gene expression or follicle counts, but ovaries exposed to the phthalate mixture (0.1 µg/mL) exhibited marginally significantly increased apoptosis as revealed by DNA fragmentation staining. Overall, these data show that parent phthalates and phthalate metabolites differentially impact ovarian function.
Summary sentence
Environmentally relevant mixtures of phthalates and phthalate metabolites disrupt the cell cycle and increase apoptosis in neonatal mouse ovaries.
Successful pregnancy establishment in mammals depends on numerous interactions between embryos and the maternal organism. Estradiol-17β (E2) is the primary embryonic signal in the pig, and its importance has been questioned recently. However, E2 is not the only molecule of embryonic origin. In pigs, prostaglandin E2 (PGE2) is abundantly synthesized and secreted by conceptuses and endometrium. The present study aimed to determine the role of PGE2 and its simultaneous action with E2 in changes in porcine endometrial transcriptome during pregnancy establishment. The effects of PGE2 and PGE2 acting with E2 were studied using an in vivo model of intrauterine hormone infusions, and were compared to the effects of E2 alone and conceptuses' presence on day 12 of pregnancy. The endometrial transcriptome was profiled using gene expression microarrays followed by statistical analyses. Downstream analyses were performed using bioinformatics tools. Differential expression of selected genes was verified by quantitative polymerase chain reaction. Microarray analysis revealed 2413 differentially expressed genes (DEGs) in the endometrium treated simultaneously with PGE2 and E2 (P < 0.01). No significant effect of PGE2 administered alone on endometrial transcriptome was detected. Gene ontology annotations enriched for DEGs were related to multiple processes such as: focal adhesion, vascularization, cell migration and proliferation, glucose metabolism, tissue remodeling, and activation of immune response. Simultaneous administration of E2 and PGE2 induced more changes within endometrial transcriptome characteristic to pregnancy than infusion of E2 alone. The present findings suggest that synergistic action of estradiol-17β and PGE2 resembles the effects of pregnancy on endometrial transcriptome better than E2 alone.
Summary sentence
Prostaglandin E2 acting simultaneously with estradiol-17β in vivo induces more changes within porcine endometrial transcriptome resembling pregnancy effects compared with estradiol-17β administered alone.
Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the periimplantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.
Summary sentence
Despite apparently normal oogenesis, female mice with mutations in chromatin remodeling gene Cecr2 are subfertile, with a reduced litter size due to embryo loss occurring either before E5.5 or at approximately E10 depending on the mutant allele.
The mechanism of bovine endometrial regeneration after parturition remains unclear. Here, we hypothesized that bovine endometrial stem/progenitor cells participate in the postpartum regeneration of the endometrium. Flow cytometry analysis identified the presence of side population (SP) cells among endometrial stromal cells. Endometrial SP cells were shown to differentiate into osteoblasts and adipocytes. RNA-seq data showed that the gene expression pattern was different between bovine endometrial SP cells and main population cells. Gene Set Enrichment Analysis identified the enrichment of stemness genes in SP cells. Significantly (false discovery rate < 0.01) upregulated genes in SP cells contained several stem cell marker genes. Gene ontology (GO) analysis of the upregulated genes in SP cells showed enrichment of terms related to RNA metabolic process and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregulated genes in SP cells revealed enrichment of signaling pathways associated with maintenance and differentiation of stem/progenitor cells. The terms involved in TCA cycles were enriched in GO and KEGG pathway analysis of downregulated genes in SP cells. These results support the assumption that bovine endometrial SP cells exhibit characteristics of somatic stem/progenitor cells. The ratio of SP cells to endometrial cells was lowest on days 9–11 after parturition, which gradually increased thereafter. SP cells were shown to differentiate into epithelial cells. Collectively, these results suggest that bovine endometrial SP cells were temporarily reduced immediately after calving possibly due to their differentiation to provide new endometrial cells.
Summary sentence: The ratio of bovine endometrial side population cells, showing characteristics similar to those of somatic stem/progenitor cells, was the lowest on days 9–11 after parturition and then increased gradually.
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Summary sentence
Characterization of this novel transgenic mouse showed that DND1GFP is expressed throughout the pre-meiotic germline, supports growing evidence in the field of germ cell heterogeneity, and demonstrated the tagged allele can be used for identification of DND1 targets.
Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two-photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (Cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction-related genes, Hypoxia-inducible factor 1-alpha (Hif1a), glutathione peroxidase 1 (Gpx1), Ras homolog family member A (RhoA), and Rho-associated protein kinase (Rock), was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.
Summary sentence
A novel murine corpus cavernosum (CC) explant culture system to analyze the penile erectile contraction/relaxation.
This study explores the hypothesis that protein hormones are nested information systems in which initial products of gene transcription, and their subsequent protein fragments, before and after secretion and initial target cell action, play additional physiological regulatory roles. The study produced four tools and key results: (1) a problem approach that proceeds, with examples and suggestions for in vivo organismal functional tests for peptide–protein interactions, from proteolytic breakdown prediction to models of hormone fragment modulation of protein–protein binding motifs in unrelated proteins; (2) a catalog of 461 known soluble human protein hormones and their predicted fragmentation patterns; (3) an analysis of the predicted proteolytic patterns of the canonical protein hormone transcripts demonstrating near-universal persistence of 9 ± 7 peptides of 8 ± 8 amino acids even after cleavage with 24 proteases from four protease classes; and (4) a coincidence analysis of the predicted proteolysis locations and the 1939 exon junctions within the transcripts that shows an excess (P < 0.001) of predicted proteolysis within 10 residues, especially at the exonal junction (P < 0.01). It appears all protein hormone transcripts generate multiple fragments the size of peptide hormones or protein–protein binding domains that may alter intracellular or extracellular functions by acting as modulators of metabolic enzymes, transduction factors, protein binding proteins, or hormone receptors. High proteolytic frequency at exonal junctions suggests proteolysis has evolved, as a complement to gene exon fusion, to extract structures or functions within single exons or protein segments to simplify the genome by discarding archaic one-exon genes.
Summary sentence
Predicted fragmentation data support the notion that protein hormones are nested information systems that gradually release multiple gene encoded physiological chemical signals during an evolved proteolytic fragmentation and degradation process.
Nazli Akin, Lucia von Mengden, Anamaria-Cristina Herta, Katy Billooye, Julia van Leersum, Berta Cava-Cami, Laura Saucedo-Cuevas, Fabio Klamt, Johan Smitz, Ellen Anckaert
In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side-effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared with conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM—a novel two-step IVM method—has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells (CCs) are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared with their in vivo counterparts. However, their CCs exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM CCs are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.
Summary sentence Pre-maturation culture conditions for immature oocytes from small antral follicles affect glycolytic activity and antioxidant defense capacity in mouse CCs during IVM.
Glucose is a preferred energy substrate for metabolism by bovine granulosa cells (GCs). O-linked N-acetylglucosaminylation (O-GlcNAcylation), is a product of glucose metabolism that occurs as the hexosamine biosynthesis pathway (HBP) shunts O-GlcNAc sugars to serine and threonine residues of proteins. O-GlcNAcylation through the HBP is considered a nutrient sensing mechanism that regulates many cellular processes. Yet little is known of its importance in GCs. Here, O-GlcNAcylation in GCs and its effects on GC proliferation were determined. Bovine ovaries from a slaughterhouse, staged to the mid-to-late estrous period were used. Follicular fluid and GCs were aspirated from small (3–5 mm) and large (>10 mm) antral follicles. Freshly isolated GCs of small follicles exhibited greater expression of O-GlcNAcylation and O-GlcNAc transferase (OGT) than large follicles. Less glucose and more lactate was detectable in the follicular fluid of small versus large follicles. Culture of GCs revealed that inhibition of the HBP via the glutamine fructose-6-phosphate aminotransferase inhibitor, DON (50 µM), impaired O-GlcNAcylation and GC proliferation, regardless of follicle size. Direct inhibition of O-GlcNAcylation via the OGT inhibitor, OSMI-1 (50 µM), also prevented proliferation, but only in GCs of small follicles. Augmentation of O-GlcNAcylation via the O-GlcNAcase inhibitor, Thiamet-G (2.5 µM), had no effect on GC proliferation, regardless of follicle size. The results indicate GCs of bovine antral follicles undergo O-GlcNAcylation, and O-GlcNAcylation is associated with alterations of glucose and lactate in follicular fluid. Disruption of O-GlcNAcylation impairs GC proliferation. Thus, the HBP via O-GlcNAcylation constitutes a plausible nutrient-sensing pathway influencing bovine GC function and follicular growth.
Summary sentence: O-GlcNAcylation occurs in granulosa cells of small and large bovine antral follicles, and its inhibition impairs granulosa cell proliferation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere