Nuclear progestin receptor (PGR) is a ligand-activated transcription factor that has been identified as a pivotal mediator of many processes associated with ovarian and uterine function, and aberrant control of PGR activity causes infertility and disease including cancer. The essential role of PGR in vertebrate ovulation is well recognized, but the mechanisms by which PGR is rapidly and transiently induced in preovulatory follicles after the ovulatory LH surge are not known in lower vertebrates. To address this issue, we utilized the small freshwater teleost medaka Oryzias latipes, which serves as a good model system for studying vertebrate ovulation. In the in vitro ovulation system using preovulatory follicles dissected from the fish ovaries, we found that inhibitors of EPAC (brefeldin A), RAP (GGTI298), PI3K (Wortmannin), AKT (AKT inhibitor IV), and CREB (KG-501) inhibited LH-induced follicle ovulation, while the PKA inhibitor H-89 had no effect on follicle ovulation. The inhibitors capable of inhibiting follicle ovulation also inhibited follicular expression of Pgr and matrix metalloproteinase-15 (Mmp15), the latter of which was previously shown to not only be a downstream effector of Pgr but also a proteolytic enzyme indispensable for follicle rupture in medaka ovulation. Further detailed analysis revealed for the first time that the cAMP/EPAC/RAP/PI3K/AKT/CREB signaling pathway mediates the LH signal to induce Pgr expression in preovulatory follicles. Our data also showed that phosphorylated Creb1 is a transcription factor essential for pgr expression and that Creb1 phosphorylated by Akt1, rather than PKA, may be preferably used to induce pgr expression.
Summary sentence
EPAC/RAP/PI3K/AKT/CREB signaling mediates LH-induced cAMP signaling to induce medaka Pgr expression in ovulating follicles.