Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.
In the growing follicle, communication between the oocyte and its surrounding follicular cells is essential for normal oocyte and follicular development. Maturation of the fully grown oocyte in vivo is associated with the loss of cumulus cell-oocyte gap junctional communication, preventing entry of meiotic-modulating factors such as cAMP into the oocyte. We have previously shown that oocyte and cumulus cell cAMP levels can be independently regulated using inhibitors of cell-specific phosphodiesterase (PDE) isoenzymes. The objectives of this study were to examine the effects of cell type-specific PDE inhibitors on the maintenance of cumulus cell-oocyte gap junction communication (GJC) and oocyte meiotic progression. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles of abattoir-derived ovaries. Cumulus cell-oocyte GJC during oocyte maturation was quantified using the fluorescent dye, calcein-AM. COCs were cultured in the presence of specific PDE inhibitors, milrinone (an oocyte PDE3 inhibitor) or rolipram (a cumulus cell PDE4 inhibitor), and were pulsed with calcein-AM to allow dye transfer between the two cell types. Following cumulus cell removal, fluorescence in denuded oocytes was measured by microphotometry, and meiotic progression was assessed. In control COCs, dye transfer from cumulus cells to the oocyte fell progressively from 0 to 9 h, after which oocyte-cumulus cell GJC was completely lost. Loss of GJC was significantly attenuated (P < 0.05) during this time in response to treatment with milrinone and rolipram. Forskolin maintained GJC at the initial 0 h level until 3–4 h of culture, whereas treatment with milrinone and forskolin together actually increased the level of dye transfer above that in COCs treated with forskolin alone. Importantly, all treatments that prolonged GJC also delayed meiotic resumption, with meiosis generally resuming when fluorescence had fallen to ∼40% of initial levels. These results, together with our previous studies, demonstrate that treatments that maintain or elevate cAMP levels in cumulus cells, oocytes, or both result in prolonged oocyte-cumulus cell communication and delayed meiotic resumption.
Immunization of ewes against growth differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) can lead to an increased ovulation rate; however, it is not known whether normal pregnancies occur following such treatments. The aims of the present study were to determine the effects of a short-term immunization regimen against BMP15 and GDF9 on ovulation rate, fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, and the ability of immunized ewes to carry a pregnancy to term. Ewes were given a primary and booster immunization against keyhole limpet hemocyanin (KLH; control, n = 50), a GDF9-specific peptide conjugated to KLH (GDF9, n = 30), or a BMP15-specific peptide conjugated to KLH (BMP15, n = 30). The estrous cycles of all ewes were synchronized, and ewes were joined with fertile rams approximately 14 days after the booster immunization. The number of corpora lutea was determined by laparoscopy 3–4 days following mating. Subsequently, about one-half of the ewes in each group underwent an embryo transfer procedure 4–6 days following mating, with the embryos being transferred to synchronized, nonimmunized recipients. The remaining ewes were allowed to carry their pregnancies to term. Short-term immunization against either BMP15 or GDF9 peptides resulted in an increase in ovulation rate with no apparent detrimental affects on fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, or the ability of the immunized ewes to carry a pregnancy to term. Therefore, regulation of BMP15, GDF9, or both is potentially a new technique to enhance fecundity in some mammals.
The cathepsins are a family of cysteine proteases that have been broadly implicated in proteolytic processes during cell growth, cell development, and normal adult cellular function. Cathepsin L is a major secretory product of rat and mouse Sertoli cells, the absence of which in furless mice is associated with atrophy of some seminiferous tubules. However, furless mice produce viable sperm, suggesting the possibility that other members of the cathepsin family of proteases may complement cathepsin L action in the testis. Our objective herein was to begin to test this hypothesis. To this end, we first utilized cDNA microarray technology to identify the members of the cathepsin gene family expressed by freshly isolated adult rat Sertoli cells. This approach, complemented by Northern blot analyses, showed that in addition to cathepsin L, cathepsin K is highly and specifically expressed in Sertoli cells. As is also true of cathepsin L, cathepsin K mRNA was found to be expressed by Sertoli cells at specific stages of the cycle of the seminiferous epithelium, with maximal expression at stages VI–VII. The use of immunocytochemical methods revealed that cathepsin K protein localizes to the cytoplasm of Sertoli cells at stages VI–VIII, to small punctuate lysosomes at stages I–VIII and XIII–XIV, and to early and late residual bodies at stages IX–XII. This localization was found to be similar to that of cathepsin L. The similarity in the expression and localization of cathepsin K and cathepsin L suggest that the two proteases may have similar functions. If true, this might explain the fertility of furless mice. Further, the results suggest that cathepsin K, in both its secreted and lysosomal forms, may play a role in the degradation of Sertoli cell residual bodies.
We investigated whether β-adrenergic receptors (β-AR) regulate the phospholipase C (PLC) system in midpregnant rat myometrium. PLCβ isoforms were characterized, and the effect of isoproterenol (β-adrenergic agonist) was tested on myometrial inositol phosphate (InsP) production and uterine contraction. Using specific antibodies, we showed that rat myometrium expresses PLCβ1, PLCβ3, and PLCβ4, and to a lesser degree PLCβ2. Quantitative analysis revealed that PLCβ isoforms are differentially expressed during pregnancy. Indeed, the amount of PLCβ4 is increased at midpregnancy, whereas PLCβ1, PLCβ2, and PLCβ3 are up-regulated at term. At midpregnancy, pretreatment of myometrial strips with isoproterenol significantly reduced basal and agonist-stimulated InsP production. Forskolin, a diterpene that increases cAMP accumulation by directly activating adenylyl cyclases, had no effect on InsP production. In contrast, two global potassium (K) channel inhibitors, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), prevented attenuation of InsP production by isoproterenol. Isoproterenol also significantly decreased spontaneous and agonist-induced contraction of the longitudinal layer of midpregnant rat myometrium. Preincubation of uterine strips with TEA plus 4-AP prior to β-AR activation blocked only partial uterine relaxation, whereas Forskolin was as potent as isoproterenol. This indicates that β-AR operate through both K channels and cAMP to induce uterine relaxation. In conclusion, we show for the first time that three myometrial PLCβ isoforms (PLCβ1, PLCβ2, and PLCβ3) are down-regulated at midpregnancy. At this period, β-AR reduce basal and agonist-stimulated InsP production through activation of K channels. Altogether, these mechanisms could act to decrease responsiveness of the longitudinal layer of myometrium to contractant factors.
Growth differentiation factor-9 (GDF-9) and stem cell factor (SCF) influence follicle formation beyond the primary stage; however, factors influencing the formation of primordial follicles remain elusive. To determine whether GDF-9 and SCF promoted primordial follicle formation during ovarian morphogenesis in the hamster, and whether FSH had any modulatory influence, fetal ovaries were collected on Gestation Day 15 from pregnant hamsters treated with or without an FSH antiserum on Gestation Day 12 and cultured in vitro up to Day 9 with SCF, GDF-9, or FSH. The percentages and diameters of primordial, primary, and secondary follicles and their oocytes were determined by morphometric evaluation, and the expression of GDF-9 was detected by immunolocalization. SCF, GDF-9, and FSH promoted primordial and primary follicle formation, but GDF-9 was more efficient. The diameters of the follicles developed under GDF-9 or FSH, but not SCF, compared well with those developed in vivo. FSH- and GDF-9-induced folliculogenesis was attenuated by the SCF antibody. Similarly, in vitro formation of primordial follicles decreased markedly in ovaries exposed to the FSH antiserum in utero, which was reversed by SCF, GDF-9, or FSH; however, GDF-9 had a profound effect on follicular development. GDF-9 protein appeared exclusively in the oocytes on Postnatal Day 4; however, it appeared in vitro by 48 h, and the expression was upregulated by FSH. These results suggest that although SCF-induced primordial follicle formation constitutes primarily somatic cell development, GDF-9 influences both the oocyte and its companion somatic cells. FSH plays an important role in primordial folliculogenesis in the hamster via GDF-9 and SCF.
We recently demonstrated that the reduction in the number of primordial follicles in ovaries of near-term baboon fetuses deprived of estrogen in utero was associated with increased expression of α-inhibin, but not activin βA and βB or the activin receptors. Therefore, we proposed that estrogen regulates fetal ovarian follicular development by controlling the intraovarian inhibin:activin ratio. As a prelude to conducting experiments to test this hypothesis, in the current study we determined whether the primate fetal ovary expressed Smads 2/3 and 4 and whether expression of these activin-signaling proteins was altered in fetal ovaries of baboons in which estrogen production was suppressed. Western blot analyses demonstrated that the 59 kDa Smad 2, 54 kDa Smad 3, and 64 kDa Smad 4 proteins were expressed in fetal ovaries of untreated baboons at both mid and late gestation and that the level of expression was not significantly altered in late gestation by in vivo treatment with CGS 20267 or CGS 20267 and estrogen. Immunocytochemistry localized Smads 2/3 and 4 to cytoplasm of oocytes and pregranulosa cells at midgestation and oocytes and granulosa cells of primordial follicles in late gestation. Smad 4 was also detected in granulosa cell nuclei in late gestation, and nuclear expression appeared to be decreased in fetal ovaries of baboons deprived of estrogen. The site of localization of Smads correlated with localization of the activin receptors IA and IIB, which we previously showed were abundantly expressed in oocytes and (pre)granulosa cells at both mid and late gestation and unaltered by estrogen deprivation. In summary, the results of the current study are the first to show that the intracellular signaling molecules required to transduce an activin signal are expressed in the baboon fetal ovary and that expression was not altered by estrogen deprivation in utero. These findings, coupled with our previous observations showing that estrogen deprivation reduced follicle numbers and upregulated/induced expression of inhibin but not activin or the activin receptors, lend further support to the hypothesis that estrogen regulates fetal ovarian folliculogenesis by controlling the intraovarian activin:inhibin ratio.
Vasoactive intestinal peptide (VIP) has been implicated in the regulation of avian reproductive activity and appears to act at the level of the hypothalamus and pituitary. This in situ hybridization histochemistry study describes the distribution of VIP receptor mRNA expression in the hypothalamus and the pituitary of reproductively active (laying) and quiescent (nonphotostimulated, incubating, and photorefractory) female turkeys and characterizes the differences observed in VIP receptor gene expression. VIP receptor mRNA, while expressed throughout the hypothalamus, was specifically expressed in areas known to contain GnRH-I neurons in the chicken, i.e., the lateral septum, medial preoptic area, anterior hypothalamus, and paraventricular nucleus. Significant differences in VIP receptor mRNA expression between different reproductive states was observed only within the infundibular nuclear complex. VIP receptor mRNA was markedly less in nonphotostimulated and photorefractory hens as compared with laying and incubating hens. The most dense VIP receptor mRNA was found in the anterior pituitary, where it was 2.4- and 3.0-fold greater in laying and incubating hens, respectively, as compared with that in nonphotostimulated ones. Hens that stopped incubating and became photorefractory displayed pituitary VIP receptor mRNA levels similar to those of nonphotostimulated birds. The changes in pituitary VIP receptor mRNA expression were positively correlated with known changes in pituitary prolactin (PRL) mRNA expression and PRL content and release. These findings indicate that the variations in PRL secretion observed across the turkey reproductive cycle are, in part, regulated by changes in VIP receptors at the pituitary level.
The postnatal development of Leydig cell precursors is postulated to be controlled by Sertoli cell secreted factors, which may have a determinative influence on Leydig cell number and function in sexually mature animals. One such hormone, Mullerian inhibiting substance (MIS), has been shown to inhibit DNA synthesis and steroidogenesis in primary Leydig cells and Leydig cell tumor lines. To further delineate the effects of MIS on Leydig cell proliferation and steroidogenesis, we employed the established ethylene dimethanesulphonate (EDS) model of Leydig cell regeneration. Following EDS ablation of differentiated Leydig cells in young adult rats, recombinant MIS or vehicle was delivered by intratesticular injection for 4 days (Days 11–14 after EDS). On Days 15 and 35 after EDS (1 and 21 days post-MIS injections), endocrine function was assessed and testes were collected for stereology, immunohistochemistry, and assessment of proliferation and steroidogenesis. Although serum testosterone and luteinizing hormone (LH) were no different, intratesticular testosterone was higher on Day 35 in MIS-treated animals. At both time points, intratesticular 5α-androstan-3α,17β-diol concentrations were much higher than that of testosterone. MIS-treated animals had fewer mesenchymal precursors on Day 15 and fewer differentiated Leydig cells on Day 35 with decreased numbers of BrdU nuclei. Apoptotic interstitial cells were observed only in the MIS-treated testes, not in the vehicle-treated group on Day 15. These data suggest that MIS inhibits regeneration of Leydig cells in EDS-treated rats by enhancing apoptotic cell death as well as by decreasing proliferative capacity.
We had previously reported the isolation of the testis-specific human gene Tsga10, which is not expressed in testes from two infertile patients. To study its role and function, we cloned the mouse homologue Mtsga10. Mtsga10 localizes to mouse chromosome 1, band B. This region is syntenic with human chromosome 2q11.2, where Tsga10 is located. We demonstrate that Mtsga10 mRNA is expressed in testis, but not in other adult tissues, and in several human fetal tissues and primary tumors. We uncovered that different species use different first exons and, consequently, different promoters. Using several antibodies, we discovered that, in mouse testis, Mtsga10 encodes a 65-kDa spermatid protein that appears to be processed to a 27-kDa protein of the fibrous sheath, a major sperm tail structure, in mature spermatozoa. Mtsga10 protein contains a putative myosin/Ezrin/radixin/moesin (ERM) domain. Transfection of fibroblasts with GFP-Mtsga10 fusion protein results in formation of short, thick filaments and deletion of the myosin/ERM domain abolished filament formation. Our results suggest the possibility that Tsga10 plays a role in the sperm tail fibrous sheath.
The developmental consequences of chromosomal aberrations in embryos include spontaneous abortions, morphological defects, inborn abnormalities, and genetic/chromosomal diseases. Six germ-cell mutagens with different modes of action and spermatogenic stage sensitivities were used to investigate the relationship between the types of cytogenetic damage in zygotes with their subsequent risk of postimplantation death and of birth as a translocation carrier. Independent of the mutagen used, over 98% of paternally transmitted aberrations were chromosome type, rather than chromatid type, indicating that they were formed during the period between exposure of male germ cells and initiation of the first S phase after fertilization. There were consistent one-to-one agreements between the proportions of a) zygotes with unstable aberrations and the frequencies of dead embryos after implantation (slope = 0.87, confidence interval [CI]: 0.74, 1.16) and b) zygotes with reciprocal translocations and the frequency of translocation carriers at birth (slope = 0.74, CI: 0.48, 2.11). These findings suggest that chromosomal aberrations in zygotes are highly predictive of subsequent abnormal embryonic development and that development appears to proceed to implantation regardless of the presence of chromosomal abnormalities. Our findings support the hypothesis that, for paternally transmitted chromosomal aberrations, the fate of the embryo is already set by the end of G1 of the first cell cycle of development.
The present study was designed to evaluate the survival and proliferation of bovine spermatogonial stem cells in an explant culture system over a 2-wk period. Explants of calf testicular parenchyma were placed on 0.45-μm pore membranes in culture and maintained for 1–2 wk. Histological examinations of fresh (t0) and cultured tissues revealed morphologically normal seminiferous tubules. Germ cell numbers/tubule increased (P ≤ 0.05) during culture when compared with t0, yet germ cell differentiation was not observed. Testosterone was present in medium throughout the culture period, indicating functional Leydig cells. Sertoli, spermatogonial, and spermatogonial stem cell viability was evaluated by reverse transcription-polymerase chain reaction for cell-specific gene expression of stem cell factor, protein gene product 9.5, and glial cell line-derived neurotrophic factor family receptor-α1, respectively. Results demonstrated the expression of all genes at t0, 1 wk, and 2 wk of culture. Single-cell suspensions were prepared from the testicular tissues at t0 and during culture and transplanted into nude mouse testes to investigate spermatogonial stem cell viability. One month after transplantation, colonies of round bovine cells were identified in all mouse testes analyzed, indicating survival of spermatogonial stem cells. The average number of resulting colonies in recipient testes was significantly (P ≤ 0.05) higher following 1 wk of culture compared with t0 and was numerically higher at 2 wk of culture compared with t0. This increase in colony numbers over time in culture indicates spermatogonial stem cell proliferation in vitro. This explant culture system appears to provide an environment that supports survival and proliferation of bovine spermatogonial stem cells.
Targeted gene deletion of insulin-like growth factor-I (IGF-I) results in diminished numbers of Leydig cells (LCs) and lower circulating testosterone (T) levels in adult males. The impact of endogenous IGF-I withdrawal on proliferation (labeling index, LI) and differentiation of LCs was investigated, testing for restorative effects of IGF-I replacement and/or LH stimulation. With IGF-I replacement in mutant mice, LIs increased more than 200% (P < 0.05). LC numbers were also increased by 200%, whereas the numbers of intermediate cell progenitors (PLCs) were unchanged compared to mutant vehicle controls. LIs of PLCs in wild-type males increased by 200% after LH stimulation, and LC numbers increased by 50% compared to vehicle-treated controls (P < 0.05). In contrast, there was no effect of LH on LI in mutant mice, but LC numbers still increased by 30% (P < 0.05). Additive effects on LI and cell numbers were observed in response to IGF-I plus LH in mutants, implying that the two hormones use separate signaling pathways. Serum T and LH levels in wild-type and mutant males were equivalent. Exogenous LH increased T production 8-fold in wild-type males (P < 0.01). In mutant mice, neither LH stimulation nor IGF-I alone affected serum T levels, but IGF-I plus LH stimulation increased serum T 2-fold (P < 0.05). These data support the conclusions that 1) IGF-I is a critical autocrine and/or paracrine factor in the control of adult LC numbers and function; and 2) LH is not a direct mitogenic factor for LCs, and acts in part through IGF-I to stimulate proliferative activity.
The present study was designed to establish the cellular localization and expression of transforming growth factor β (TGFβ) signaling pathway components, including TGFβ1 and β2; TGFβ receptors type I (TβRI) and II (TβRII); and Smads 2, 3, 4, and 6 during gonadotropin-induced follicular maturation and ovulation in the mouse ovary. Immature 21-day-old mice were sequentially treated with recombinant human FSH, 5 IU daily for 3 days, and hCG once at Day 24 of life. Immunohistochemical experiments revealed a TGFβ1 staining in granulosa cells (GC) and theca interna cells (TIC) as well as in oocytes, whereas that of TGFβ2 was mainly localized in oocytes and GC. Strong immunostaining for both TβRI and -RII was observed in the TIC and, to a lesser extent, in GC. Whereas oocytes did not exhibit any staining for TβRII, their TβRI immunostaining was strong. Smads were detected in oocytes, GC, and luteal cells and in a lesser amount in TIC; the immunostaining for Smad 4 was the strongest. Western blotting and reverse transcription-polymerase chain reaction analyses indicated that, in response to gonadotropins, TGFβ2, TβRI, Smad 2 and Smad 4 mRNA and protein levels increased, while those of Smad 6 decreased in ovarian homogenates. In conclusion, these results show that, in a model of immature mouse exposed to a sequential gonadotropin treatment, FSH and LH increased the expression of the TGFβ signaling system through the increase of TGFβ2, TβRI, stimulatory Smad 2, and common Smad 4 expression, which occurred concomitantly with a decrease of the inhibitory Smad 6 expression.
LH, FSH, and chorionic gonadotropin (CG) are comprised of a common α subunit and a hormone-specific β subunit. Using Madin-Darby canine kidney (MDCK) epithelial cells to examine the polarized secretion of human CG/LH, we previously reported that CG and LH were detected in the apical and basolateral compartments, respectively, and the carboxyl terminal end of the CGβ subunit contains a strong apical signal. Here we show that the carboxyl seven amino acids in the LHβ subunit contribute to the basolateral secretion of LH, and an LH chimera bearing the CGβ apical signal is redirected from the basolateral to the apical compartments. Because LH and FSH are synthesized in the same cell, we also compared the secretion polarity of LH with FSH. MDCK cells expressing the FSH dimer displayed an almost equal distribution of protein into the apical and basolateral compartments. Given that the LHβ and CGβ carboxy terminal sequences, which differ from that in the FSHβ subunit, occupy a pivotal role in their polarized behavior, the results support the hypothesis that pituitary exit of LH and FSH occur via different secretion pathways, and are released spatially from the pituitary via different circulatory routes.
Bovine seminal plasma (BSP) contains a family of major proteins designated BSP-A1/A2, BSP-A3, and BSP-30kDa (collectively called BSP proteins) that bind to sperm at ejaculation and potentiate sperm capacitation. Homologous proteins have been identified in stallion, boar, goat, and ram seminal plasma. We report here the isolation and characterization of homologous proteins from bison seminal vesicle secretions. Seminal vesicle secretory proteins were precipitated by adding cold ethanol and recovered by centrifugation. The precipitates were resuspended in ammonium bicarbonate, dialyzed, and lyophilized. Lyophilized proteins were dissolved in 0.05 M phosphate buffer (PB) and loaded onto a gelatin-agarose column. The unadsorbed proteins and adsorbed proteins were eluted with PB and 5 M urea in PB, respectively. The gelatin-adsorbed fraction was analyzed by SDS-PAGE and revealed the presence of four major proteins designated BiSV-16kDa, BiSV-17kDa, BiSV-18kDa, and BiSV-28kDa (BiSV: bison seminal vesicle proteins). Heparin-Sepharose chromatography allowed the separation of BiSV-16kDa, which did not bind heparin from other BiSV proteins, which bound heparin. Immunoblotting revealed that BiSV-16kDa cross-reacted with BSP-A3 antibodies, BiSV-17kDa and BiSV-18kDa cross-reacted with BSP-A1/-A2 antibodies, and BiSV-28kDa cross-reacted with BSP-30kDa antibodies. Radioimmunoassays indicated that ∼25% of bison seminal vesicle total proteins are related to BSP proteins. The amino-terminal sequencing indicated that BiSV proteins share almost 100% sequence identity with BSP proteins. In addition, BiSV proteins bind to low-density lipoproteins isolated from hen's egg yolk. These results confirm that BSP protein homologs are present in mammalian seminal plasma and they may share the same biological role.
The obligate embryonic diapause that characterizes gestation in mink engenders a developmental arrest at the blastocyst stage. The characteristics of escape from obligate diapause were investigated in embryos reactivated by treatment of the dams with exogenous prolactin. Protein and DNA synthesis showed marked increases within 72 h after the reinitiation of development, and embryo diameter increased thereafter. Trophoblast cells from embryos at Day 5 after activation proliferated more readily in vitro than trophoblasts from diapause or from Day 9 after activation, while in Day 9 embryos, cells from the inner cell mass (ICM) replicated comparatively more readily in vitro. There was evidence of expression of fibroblast growth factor-4 (FGF4) in both diapause and activated embryos and in ICM, but not the trophoblast. FGF receptor-2 was present in embryos from Day 5 after reactivation in both trophoblast and ICM cell lines. Trophoblast cell lines established from mink embryos proliferated in culture in the presence of FGF4 with a doubling time of 1.4 days, while in its absence, the doubling time was 4.0 days. We conclude that, during reinitiation of embryogenesis in the mink after diapause, embryo growth is characterized by gradual increases in protein synthesis, accompanied by mitosis of the trophoblast and ICM. There appears to be a pattern of differential proliferation between cells derived from these embryonic compartments, with the trophoblast phase of replication occurring mainly in the early reactivation phase, while the ICM proliferates more rapidly nearer to the time of implantation.
Net estrogen sensitivity in target tissues critically depends on the regulated expression of full-length and alternately processed estrogen receptor (ER) isoforms. However, the molecular mechanisms for the control of pituitary responsiveness to estrogen remain partially unknown. In the present communication, we report the ability of different ligands, with distinct agonistic or antagonistic properties at the ER, to modulate the expression of the transcripts encoding ERα and ERβ isoforms, as well as those for the truncated ERα product (TERP), and the variant ERβ2, in pituitaries from ovariectomized rats, i.e., a background devoid of endogenous estrogen. Compared with expression levels at the morning of proestrus, ovariectomy (OVX) resulted in increased pituitary expression of ERβ and ERβ2 mRNAs, whereas it decreased TERP-1 and -2 levels without affecting those of ERα. Administration of estradiol benzoate (as potent agonist for α and β forms of ER) or the selective ERα agonist, propyl pyrazole triol, fully reversed the responses to OVX, while the ERβ ligand, diarylpropionitrile, failed to induce any significant effect except for a partial stimulation of TERP-1 and -2 mRNA expression levels. To note, the ERβ agonist was also ineffective in altering pituitary expression of progesterone receptor-B mRNA, i.e., a major estrogen-responsive target. In all parameters tested, tamoxifen, a selective ER modulator with mixed agonist/antagonist activity, behaved as ERα agonist, although the magnitude of tamoxifen effects was significantly lower than those of the ERα ligand, except for TERP induction. In contrast, the pure antiestrogen RU-58668 did not modify the expression of any of the targets under analysis. Overall, our results indicate that endogenous estrogen differentially regulates pituitary expression of the mRNAs encoding several ER isoforms with distinct functional properties, by a mechanism that is mostly conducted through ERα. Differential regulation of ER isoforms may represent a relevant system for the self-tuning of estrogen responsiveness in female pituitary.
Nitric oxide (NO), synthesized from l-arginine by NO synthase (NOS), is a key regulator of placental angiogenesis and growth during pregnancy. However, little is known about placental NO synthesis associated with ovine conceptus development. This study was conducted to test the hypothesis that placental NO synthesis is greatest during early gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (n = 4 per day) to obtain placentomes, intercotyledonary placenta, and intercaruncular endometrium. Tissues were analyzed for constitutive NOS (cNOS) and inducible NOS (iNOS) activities, NO synthesis, tetrahydrobiopterin (BH4) and NADPH (essential cofactors for NOS), and GTP-cyclohydrolase I (GTP-CH, a rate-controlling enzyme in de novo synthesis of BH4) activity using radiochemical and chromatographic methods. Marked changes in NO synthesis, cNOS and iNOS activities, GTP-CH activity, and concentrations of BH4 and NADPH occurred in all placental and endometrial tissues between Days 30 and 140 of gestation. NO synthesis peaked on Day 60 of gestation in both intercotyledonary placenta and placentomes and on Days 40–60 in intercaruncular endometrium. NO synthesis in placentomes increased 100% between Days 80 and 100 of gestation, when placental and uterine blood flows increase continuously. In all placental and endometrial tissues, NO synthesis was positively correlated with total NOS activity, GTP-CH activity, and concentrations of BH4 and NADPH. Importantly, these results indicate a high degree of metabolic coordination among the several integrated pathways that support high rates of NO synthesis in the conceptus and uterus and establish a new base of information for future studies to define the roles of NO in fetal-placental growth and development.
Vitamin A (also called retinol) and its derivatives, retinoic acids (RAs), are required for postnatal testicular function. Abnormal spermatogenesis is observed in rodents on vitamin A-deficient diets and in retinoic acid receptor α (RARα) knockout mice. In contrast, RA has an inhibitory effect on the XY gonad development in embryos. To characterize this inhibitory effect of RA, we investigated the cellular events that are required for the XY gonad development, including cell migration from the adjacent mesonephros into the gonad, fetal Sertoli cell differentiation, and survival of gonocytes. In organ cultures of Embryonic Day 13 (E13) XY gonads from rats, all-trans-retinoic acid (tRA) inhibited mesonephric cell migration into the gonad. Moreover, treatment with tRA decreased the expression of Müllerian-inhibiting substance in Sertoli cells and dramatically reduced the number of gonocytes. Increased apoptosis was detected in the XY gonads cultured with tRA, suggesting that the loss of gonocytes could be due to increased apoptosis. In addition, Am580, a synthetic compound that exhibits RARα-specific agonistic properties, mimicked the inhibitory effects of tRA on the XY gonad development including mesonephric cell migration and gonocyte survival. Conversely, a RARα-selective antagonist, Ro 41-5253, suppressed the inhibitory ability of tRA on the XY gonad development. These results suggest that retinoic acid acting through RARα negatively affects fetal Sertoli cell differentiation and gonocyte survival and blocks the migration of mesonephric cells, thereby leading to inhibition of the XY gonad development.
Syncytin, a protein encoded by an envelope gene of a human endogenous retrovirus-W (HERV-W), plays a critical role in trophoblast differentiation. We isolated the 5′-flanking region of the syncytin gene from human genomic DNA by PCR and identified cis-acting elements on the promoter that are important for transcription. The major transcription initiation site identified by mung bean nuclease protection assays is 56 base pairs (bp) downstream from a putative CCAAT box. Deletion analysis of the 5′-flanking region of the syncytin gene indicated that the proximal 148 bp are essential for minimal promoter activity and that regions of the promoter from nt −1519 to −984 and nt −294 to −148 are required for maximal expression in normal trophoblast cells. DNase I footprint analysis of the region between nt −252 and 110 revealed three protected regions, FP1–FP3. Mutagenesis of a hepatocyte-specific nuclear protein-1 (HAPF1) binding site in FP1 and a TATA box in FP3 had no effects on basal promoter activity. However, mutation of the CCAAT motif and the octamer protein (Oct) binding site in FP2 decreased promoter activity by 88% and 76%, respectively. Mutation of the ecdysone receptor (EcR) response element in FP2, which may bind a nuclear hormone receptor, increased basal promoter activity by 2-fold. Gel shift and supershift assays indicated that CCAAT-binding factor (CBF) binds to the CCAAT motif and that Oct binds to the Oct binding site. Taken together, these findings indicate that the syncytin promoter is located in the 5′ long terminal repeat (LTR) of the HERV-W gene and that binding sites for CBF and Oct in the proximal promoter are critical for transcriptional regulation of the gene in trophoblast cells.
This study aimed at collecting background knowledge for chimeric pig production. We analyzed the genetic sex of the chimeric pigs in relation to phenotypic sex as well as to functional germ cell formation. Chimeric pigs were produced by injecting Day 6 or Day 7 inner cell mass (ICM) cells into Day 6 blastocysts. Approximately 20% of the piglets born from the injected blastocysts showed overt coat color chimerism regardless of the embryonic stage of donor cells. The male:female sex ratio was 7:2 and 6:1 in the chimeras derived from Day 6 and Day 7 ICM cells, respectively, showing an obvious bias toward males. When XX donor cells were injected into XY blastocysts at the same embryonic stage, the phenotypic sex of the resulting chimera was male with no germ-line cells formed from the donor cell lineage. On the other hand, when the donor was XY and the recipient blastocyst was XX, the phenotypic sex of the chimera was male, and germ-line cells were derived only from the donor cells. The combination of XY donor cells and XY blastocysts produced some chimeras in which the donor cell lineage did not contribute to germ-line formation even when it appeared in coat color. When the embryonic stage of the donor was advanced by 1 day in the XY-XY combination, 100% of the germ-line cells of the chimeras were derived from the donor cell lineage. These data showed that characteristics of sex differentiation and germ cell formation in chimeric pigs are similar to those in chimeric mice.
For sperm preservation, semen is generally diluted with extender containing egg yolk (EY), but the mechanisms of sperm protection by EY are unclear. The major proteins of bull seminal plasma (BSP proteins: BSP-A1/A2, BSP-A3, and BSP-30-kDa) bind to sperm surface at ejaculation and stimulate cholesterol and phospholipid efflux from the sperm membrane. Since EY low-density lipoprotein fraction (LDF) interacts specifically with BSP proteins, it is proposed that the sequestration of BSP proteins in seminal plasma by EY-LDF represents the major mechanism of sperm protection by EY. In order to gain further insight into this mechanism, we investigated the effect of seminal plasma, EY, and EY-LDF on the binding of BSP proteins to sperm and the lipid efflux from the sperm membrane. As shown by immunodetection, radioimmunoassays, and lipid analysis, when semen was incubated undiluted or diluted with control extender (without EY or EY-LDF), BSP proteins bound to sperm in a time-dependent manner, and there is a continuous cholesterol and phospholipid efflux from the sperm membrane. In contrast, when semen was diluted with extender containing EY or EY-LDF, there was 50%–80% fewer BSP proteins associated with sperm and a significant amount of lipid added to sperm membrane during incubation. In addition, sperm function analysis showed that the presence of EY or EY-LDF in the extender preserved sperm motility. These results show that LDF is the constituent of EY that prevents binding of the BSP proteins to sperm and lipid efflux from the sperm membrane and is beneficial to sperm functions during sperm preservation.
Prolactin (PRL) initiates signal transduction by inducing homodimerization of PRL receptor (PRL-R). We have previously developed a mutant form of the PRL-R in which a part of the extracellular domain is deleted. This receptor constitutively activates protein gene transcription. We examined the oligomerization of the mutant PRL-R using two differently epitope-tagged receptors in a coimmunoprecipitation assay. It was shown that mutant receptor dimers were formed in a ligand-independent manner, which may explain the constitutive activity on milk protein gene expression. To study the biological activity of this mutant PRL-R on mammary gland development, we generated two lines of transgenic mice expressing the corresponding cDNA specifically in the mammary epithelial cells. For both transgenic lines, the mammary gland of 8-wk-old virgin mice was overdeveloped with numerous dilated ductal and alveolar structures, whereas only a limited duct network was present in wild-type animals at the same age. During pregnancy, the ducts and alveoli of transgenic mice were more developed than those of control animals. At parturition, the transgenic animals failed to lactate and nourish their offspring, and the involution of the mammary gland was strongly delayed. In conclusion, the expression of a constitutively active PRL-R by transgenesis induces a premature and abnormal mammary development and impairs terminal differentiation and milk production at the end of pregnancy.
Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5 the localization, especially of radixin and moesin, extended to the stroma surrounding the implantation chamber. With respect to ERM-associated adhesion molecules, while CD44 and ICAM-1 were exclusively localized in the stroma on Day 4, CD43 and ICAM-2 were localized to the epithelium. On Day 5, the localization of CD44 and ICAM-1 became highly concentrated in the antimesometrial stroma of the implantation chamber. The localization of CD43 and ICAM-2 remained mostly epithelial, although some stromal localization of CD43 was noted on Day 5. These results suggest that differential expression and distribution of ERM proteins and ERM-associated adhesion molecules are involved in the construction of the cellular architecture necessary for blastocyst activation and uterine receptivity leading to successful implantation.
The vasa gene is an important maternal regulator of primordial germ cell (PGC) development in both vertebrate and invertebrate models. It is also expressed in the mature gonads, but its role in these tissues is still unclear. In oviparous species, oogenesis is a complex process under hormonal control: estrogens, gonadotropins, and other hormones operate at different stages of oogenesis, regulating meiosis, vitellogenesis, follicle maturation, and egg release. The aim of this work is the determination of a regulative role of hormones controlling oocyte maturation on vasa mRNA expression in the sea bream ovary through a molecular biology approach. By in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR), reaction (the vasa mRNA in the sea bream ovary was found to be expressed at higher levels in the advanced stages of oocyte maturation. After in vivo hormonal treatment, the effect on ovarian vasa mRNA expression was studied through semiquantitative RT-PCR. The quantification of vasa-like mRNA expression in sea bream ovary demonstrates that estradiol (E2), growth hormone (GH), and the combination of gonadotropin-releasing hormone (GnRH) with GH are able to induce an increase in vasa mRNA expression. In contrast, the treatments with GnRH alone or E2 plus GH significantly decreased vasa mRNA expression. These data suggest a regulative interplay between the vasa gene expression and the endocrine system that controls the oogenesis in the ovary of the sea bream.
In many mammals, the concentration of myo-inositol in the fluid of the seminiferous tubules is dramatically higher than levels found in serum. Two enzymes involved in myo-inositol synthesis: myo-inositol-1-phosphate synthase (ISYNA1) and myo-inositol monophosphatase-1 (IMPA1), are known to have high activity in the testes. ISYNA1 is an isomerase that catalyzes the conversion of glucose-6-phoshate to myo-inositol-1-phosphate. IMPA1 then hydrolyzes the phosphate group to produce myo-inositol. Although no physiological role for the high concentration of myo-inositol has yet to be elucidated, it has been suggested that it could be involved in osmoregulation. Previous research on these enzymes in the testis has focused on enzyme activity. The objective of this study was to evaluate the expression of these genes and the myo-inositol transporter, Slc5a3, within the testis. Using Northern blot analyses, we found that all three genes, Impa1, Isyna1, and Slc5a3 are expressed in Sertoli cells. Isyna1 is highly expressed in two types of germ cells, pachytene spermatocytes and round spermatids. IMPA1 was expressed in round spermatids. Slc5a3 expression is upregulated when Sertoli cells are treated with 0.1 mM dibutyryl cAMP. When Sertoli cells were cultured in a hypertonic medium, there was an increase in the expression of Isyna1 and Slc5a3. We postulate that this upregulation is a result of the capability of the Sertoli cell to sense and then react to a change in osmolarity by increasing the transport and production of the osmolyte myo-inositol.
During the haploidization process, it is expected that diploid chromosomes of somatic cells will be reduced to haploid for the generation of artificial gametes. In the present study, we aimed to use enucleated mouse oocytes at the germinal vesicle-stage (G2/M) as recipients for somatic cells that are also synchronized to the G2/M stage for haploidization. The reconstructed oocytes were then induced to undergo meiosis in vitro and observed for their nuclear morphology and microtubule network formation at various expected stages of the meiotic division. Following in vitro maturation, more than half (62/119, 52.1%) of the reconstructed oocytes completed the first round of meiosis-like division, as evidenced by the extrusion of pseudopolar bodies (PBs). However, accelerated PB extrusion, approximately 3–4 h earlier than that by control oocytes occurred. Furthermore, abnormally large pseudo-PBs, as large as four times the normal PB sizes, were observed. During the process of in vitro maturation at both the expected stages of metaphase I (MI) and metaphase II (MII), condensed chromosomes were observed in 38.7% and 55.2% of oocytes, respectively. However, two other types of nuclear configurations were also observed: 1) uneven distribution of chromatin and 2) an interphase-like nucleus, indicating deficiencies in chromosome condensation. Following oocyte activation, more than half (21/33, 63.6%) of the reconstructed oocytes with pseudo-PBs formed separated pseudopronuclei (PN), suggesting formation of functional spindles. The formation of bipolar spindle-like microtubule network at both the expected MI and MII stages during in vitro maturation was confirmed by immunohistochemistry. In summary, this study demonstrated that a high proportion of G2/M somatic nuclei appear to undergo meiosis-like division, in two successive steps, forming a pseudo-PB and two separate pseudo-PN upon in vitro maturation and activation treatment. Moreover, the enucleated geminal vesicle cytoplast retained its capacity for meiotic division following the introduction of a somatic G2/M nucleus.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1–2.0 Gy). Intratesticular injections of S1P given 1–2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%–47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.
Mechanisms for protecting spermatozoa, and the testes that produce them, from infection are essential, given the importance of these cells and organs for the fertility of the individual and perpetuation of the species. This is borne out by the publication of numerous papers on this subject over the last 50 years. We extended our work and that of others on the anti-infectious defense system of the male genital tract, using a new strategy for the direct identification of antibacterial molecules in human seminal plasma. We subjected a liquefied seminal plasma cationic fraction to reversed-phase HPLC, monitored microbicidal activity by gel overlay and radial diffusion assays, and identified the proteins and/or peptides present in each active fraction by mass spectrometry. In addition to proteins with known potent microbicidal activity—phospholipase A2, lactoferrin, and lysozyme—we also found that peptides produced by cleavage of semenogelin I, the predominant human semen coagulum protein, had high levels of antibacterial activity.
VCY2 is a testis-specific protein that locates in a frequently deleted azoospermia factor c region on chromosome Yq. Although its genomic structure has been characterized, the function of VCY2 is still unknown. To gain insight regarding the likely function of VCY2, we investigated the proteins that interact with VCY2 using the yeast two-hybrid system. We identified a novel VCY2 interaction partner, named VCY2IP-1, that encodes an open reading frame of 1059 amino acids. The amino acid sequence of VCY2IP-1 shows 59.3% and 41.9% homology to two human microtubule-associated proteins (MAPs), MAP1B and MAP1A, respectively. VCY2IP-1 has an extensive homology to the N-terminus and C-terminus regions of MAP1B and MAP1A, placing it within a large family of MAPs. We mapped VCY2IP-1 to chromosome 19p13.11. The VCY2IP-1 gene spans 15 kilobases (kb) and consists of seven exons. Northern blot analysis identified a single, intense band of approximately 3.2-kb VCY2IP-1 transcript, predominantly expressed in human testis. In situ hybridization of human testicular sections showed the localization of VCY2IP-1 transcripts in germ cells, and reverse transcription-polymerase chain reaction analysis demonstrated the presence of VCY2 and VCY2IP-1 transcripts in human ejaculated spermatozoa. Our expression data support the involvement of VCY2 and VCY2IP-1 in spermatogenesis. Based on the high homology of VCY2IP-1 with MAPs, we propose the involvement of VCY2 in the cytoskeletal network via interaction with VCY2IP-1.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.
To investigate the role of mitogen-activated protein (MAP) kinase kinase (MEK)/MAP kinase cascade on p34cdc2 kinase activity and cyclin B1 levels during parthenogenetic activation of porcine oocytes, MEK activity, MAP kinase activity, p34cdc2 kinase activity, and cyclin B1 levels were assayed in mature porcine oocytes after treatment with different concentrations of Ca2 ionophore. A high concentration of Ca2 ionophore (50 μM) rapidly reduced MEK activity in oocytes for up to 8 h of culture. MEK activity in the 10-μM treatment group was significantly higher. The low concentration treatment transiently decreased p34cdc2 kinase activity but did not affect MAP kinase activity and ultimately induced reactivation of p34cdc2 kinase via the synthesis of cyclin B1. On the other hand, treatments of a high concentration of Ca2 ionophore or a low concentration of Ca2 ionophore plus MEK inhibitor, U0126, linearly decreased MAP kinase activity following the decrease of p34cdc2 kinase activity; most of these oocytes formed pronuclei. These results suggest that decreasing MAP kinase activity is essential to maintaining low p34cdc2 kinase activity resulting from the degradation of cyclin B via a Ca2 -dependent pathway; lower activities of both MAP kinase and p34cdc2 kinase induce normal meiotic completion and pronuclear formation of parthenogenetically activated porcine oocytes.
Tubulobulbar complexes are finger-like structures that form at the interface between maturing spermatids and Sertoli cells prior to sperm release and at the interface between two Sertoli cells near the base of the seminiferous epithelium. They originate in areas previously occupied by actin filament-associated intercellular adhesion plaques known as ectoplasmic specializations. Actin filaments also are associated with tubulobulbar complexes where they appear to form a network, rather than the tightly packed bundles found in ectoplasmic specializations. Cofilin, a calcium-independent actin-depolymerizing protein, previously has been identified in the testis, but has not been localized to specific structures in the seminiferous epithelium. To determine if cofilin is found in Sertoli cells and is concentrated at actin-rich structures, we reacted fixed frozen sections of rat testis, fixed fragmented tissue, and blots of seminiferous epithelium with pan-specific and non-muscle cofilin antibodies. In addition, GeneChip microarrays (Affymetrix, Santa Clara, CA) were utilized to determine the abundance of mRNA for all cofilin isoforms in Sertoli cells. Using the monoclonal pan-specific cofilin antibody, we found specific labeling exclusively at tubulobulbar complexes and not at ectoplasmic specializations. On one-dimensional (1D) Western blots this antibody reacted monospecifically with one band, and on 2D blots reacted with two dots, which we interpret as phosphorylated and nonphosphorylated forms of a single cofilin isotype. Messenger RNA for non-muscle cofilin in Sertoli cells is about 8.5-fold higher than for muscle-type cofilin. To confirm that the non-muscle isoform of cofilin is present at tubulobulbar complexes, we used antibodies specific to non-muscle cofilin for immunofluorescent localization. As with the pan-specific antibody, we found that the non-muscle cofilin antibody exclusively labeled tubulobulbar complexes. Results presented here indicate that non-muscle cofilin is concentrated at tubulobulbar complexes. Our results also indicate that cofilin is not concentrated at ectoplasmic specializations.
Differential allocation of energy to reproduction versus host defense is assumed to drive the seasonal antiphase relation between peak reproductive function and immunocompetence; however, evidence supporting this assumption is only correlational. These experiments tested whether photoperiod affects immune responses to antigens in peripubertal Siberian hamsters, whether such activation of the immune system exacts energetic and reproductive costs, and whether such costs vary seasonally. Male Siberian hamsters were raised from birth in long (LD) or short days (SD), which respectively initiate or inhibit the onset of puberty. To elicit a specific immune response, hamsters were injected with a novel antigen (keyhole limpet hemocyanin [KLH]) as juveniles. Reproductive development was attenuated and body temperature was elevated in LD hamsters relative to saline-injected control animals. In contrast, KLH treatments affected neither thermoregulation nor reproductive development in photoinhibited SD hamsters. In experiment 2, juvenile male hamsters were challenged with bacterial lipopolysaccharide (LPS) in order to elicit an innate immune response. Febrile and anorexic responses to LPS were greater in reproductively stimulated LD hamsters relative to reproductively inhibited SD hamsters. LPS treatments attenuated somatic and testicular development in LD hamsters, but did not significantly affect circulating testosterone concentrations. In contrast, LPS treatments were without effect on somatic and reproductive development in SD hamsters. These experiments indicate that photoperiod affects antigen-specific antibody production, febrile responses to LPS, and sickness behaviors in juvenile Siberian hamsters, and that peripubertal activation of the immune system exacts energetic and metabolic costs that can diminish the magnitude of somatic and reproductive maturation in LD. The data also underscore the importance of seasonally dependent life history factors in assessing physiological tradeoffs.
In the ewe, ovarian follicular waves emerge every 4 to 5 days and are preceded by a peak in FSH secretion. It is unclear whether large antral follicle(s) in a wave suppress the growth of other smaller follicles during the inter-wave interval, as is seen in cattle. In this study, anestrous (n = 6; experiment 1) and cyclic (n = 5; experiment 2) Western white face ewes were given ovine FSH (oFSH) (0.5 μg/kg; two s.c. injections, 8 h apart) during the growth phase (based on ultrasonography) of a follicular wave (wave 1). Control ewes (n = 5 and 6, respectively) received vehicle. In oFSH-treated ewes, serum FSH concentrations reached a peak (P < 0.05) by 12 h after oFSH treatment, and this induced FSH peak did not differ (P > 0.05) from the endogenous FSH peaks. In all ewes, emergence of follicular waves 1 and 2 was seen (P > 0.05). However, in oFSH-treated ewes, an additional follicular wave emerged ∼0.5 days after treatment: during the interwave interval of waves 1 and 2 without delaying the emergence of wave 2. The growth characteristics and serum estradiol concentrations did not differ (P > 0.05) between oFSH-induced waves and waves induced by endogenous FSH peaks. We concluded that, unlike in cattle, the largest follicle of a wave in sheep has limited direct effect on the growth of other follicles induced by exogenous oFSH. In addition, the largest follicle of a wave may possibly not influence the rhythmicity of follicular wave emergence, as it does in cattle.
The homeobox gene superfamily has been highly conserved throughout evolution. These genes act as transcription factors during several important developmental processes. To explore the functional roles of homeobox genes in spermatogenesis, we performed a degenerate oligonucleotide polymerase chain reaction (PCR) screening of a testis cDNA library and isolated a novel mouse homeobox gene. This gene, which we named Tox, encodes a homeodomain protein distantly related to members of the Paired/Pax (Prd/Pax) family. A phylogenetic analysis revealed Tox to be a member of the recently defined PEPP subfamily of Paired-like homeobox genes. Tox was mapped to chromosome X, with its homeodomain organized into three exons. A special feature of Tox is that the encoded protein sequence contains two poly-glutamic acid (poly E) stretches, which make Tox highly acidic. Tox transcripts were detected predominately in the testis and ovary of mice. Tox expression in testes was initiated soon after birth, mainly in Sertoli cells and spermatogonia; however, in adult mice, Tox expression shifts to the spermatids and spermatozoa. Tox expression in ovaries was detected in somatic cells of follicles, early on in theca cells, and in both granulosa and theca cells at the later stages of follicular development. Based on these results, Tox may play an important role during gametogenesis.
In addition to their contribution to the research on early human development, human embryonic stem (hES) cells may also be used for cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast feeder layers, which allow their continuous growth in an undifferentiated state. However, the use of hES cells in human therapy requires an animal-free culture system, in which exposure to mouse retroviruses is avoided. In this study we present a novel feeder layer-free culture system for hES cells, based on medium supplemented with 15% serum replacement, a combination of growth factors including transforming growth factor β1 (TGFβ1), leukemia inhibitory factor, basic fibroblast growth factor, and fibronectin matrix. Human ES cells grown in these conditions maintain all ES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of the three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. The culture system presented here has two major advantages: 1) application of a well-defined culture system for hES cells and 2) reduced exposure of hES cells to animal pathogens. The feeder layer-free culture system reported here aims at facilitating research practices and providing a safer alternative for future clinical applications of hES cells.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor β (TGFβ) superfamily. TGFβ, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFβ superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin α subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin βA and βB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin βA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFβ1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFβ type II receptor (TGFβ RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFβ ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFβ superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere