Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Chlamydiatrachomatis infections are prevalent worldwide, but current research, screening, and treatment are focused on females, with the burden of disease and infertility sequelae considered to be a predominantly female problem. The prevalence of chlamydial infection, however, is similar in males and females. Furthermore, a role for this pathogen in the development of male urethritis, epididymitis, and orchitis is widely accepted. The role of Chlamydia in the development of prostatitis is controversial, but we suggest that Chlamydia is an etiological agent, with incidences of up to 39.5% reported in patients with prostatitis. Infection of the testis and prostate is implicated in a deterioration of sperm, possibly affecting fertility. Chlamydia infections also may affect male fertility by directly damaging the sperm, because sperm parameters, proportion of DNA fragmentation, and acrosome reaction capacity are impaired with chlamydial infection. Furthermore, the proportion of male partners of infertile couples with evidence of a Chlamydia infection is greater than that documented in the general population. An effect of male chlamydial infection on the fertility of the female partner also has been reported. Thus, the need for a vaccine to protect both males and females is proposed. The difficulty arises because the male reproductive tract is an immune-privileged site that can be disrupted, potentially affecting spermatogenesis, if inappropriate inflammatory responses are provoked. Examination of responses to infection in humans and in experimental animal models suggest that an immunoglobulin A-inducing vaccine will be able to target the male reproductive tract effectively while avoiding harmful inflammatory responses that may impair fertility.
Recently, we demonstrated that pyruvate dehydrogenase A2 (PDHA2) is tyrosine phosphorylated in capacitated hamster spermatozoa. In this report, using bromopyruvate (BP), an inhibitor of PDHA, we demonstrated that hamster sperm hyperactivation was blocked regardless of whether PDHA was inhibited prior to or after the onset of hyperactivation, but the acrosome reaction was blocked only if PDHA was inhibited prior to the onset of the acrosome reaction. Further, inhibition of PDHA activity did not inhibit capacitation-associated protein tyrosine phosphorylation observed in hamster spermatozoa. It is demonstrated that the essentiality of PDHA for sperm capacitation is probably dependent on its ability to generate effectors of capacitation such as reactive oxygen species (ROS) and cAMP, which are significantly decreased in the presence of BP. MICA (5-methoxyindole-2-carboxylic acid, a specific inhibitor of dihydrolipoamide dehydrogenase [DLD]), another component of the pyruvate dehydrogenase complex (PDHc), also signficantly inhibited ROS generation and cAMP levels thus implying that these enzymes of the PDHc are required for ROS and cAMP generation. Furthermore, dibutryl cyclic adenosine monophosphate could significantly reverse the inhibition of hyperactivation observed in the presence of BP and inhibition of acrosome reaction observed in the presence of BP or MICA. The calcium ionophore, A23187, could also significantly reverse the inhibitory effect of BP and MICA on sperm acrosome reaction. These results establish that PDHA is required for hamster sperm hyperactivation and acrosome reaction, and DLD is required for hamster acrosome reaction. This study also provides evidence that ROS, cAMP, and calcium are involved downstream to PDHA.
The present study demonstrates the expression of adrenomedullin (ADM) in the reproductive system of the female rat and its effect on the secretion of estradiol and progesterone. Ovarian ADM and Adm mRNA levels were decreased at estrus, whereas oviductal Adm mRNA levels were low at proestrus. Both tissues were shown to coexpress mRNAs encoding the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (Ramp1), Ramp2, and Ramp3. Gel filtration chromatography of ovarian extracts showed two peaks, with the predominant one eluting at the position of authentic rat ADM (1–50) at estrus and at the position of ADM precursor at diestrus. Positive ADM immunostaining was localized in the granulosa and theca cells of the follicle and corpora lutea of the ovary. Adrenomedullin inhibited FSH-induced estradiol secretion in 2-day-old follicles and also suppressed eCG-stimulated progesterone release in corpora lutea. The inhibitory effect of ADM on the follicles and the corpora lutea was abolished by calcitonin gene-related peptide (8–37) and ADM (22–52), respectively. The presence of ADM and the gene expression of ADM and its receptor components in the female reproductive system suggest a paracrine effect of ADM on ovarian steroidogenesis.
Oocyte competence is the ability of the oocyte to complete maturation, undergo successful fertilization, and reach the blastocyst stage. Cumulus cells are indispensable for this process. Their removal significantly affects the blastocyst rates. Moreover, the properties and functions of cumulus cells are regulated by the oocyte. They also reflect the oocyte's degree of maturation. Our study was aimed at identifying markers of oocyte competence that are expressed in bovine cumulus cells. In a previous study in our laboratory, the blastocyst yield following FSH or phorbol myristate acetate (PMA) treatment was 45%%. Therefore, we tested four sets of conditions during the first 6 h of in vitro maturation (IVM): FSH (0.1 μg/ml), PMA (0.1 μM), FSH PMA, and negative control. Extracts from each IVM treatment were hybridized against the same negative control on a microarray containing a partial library of differentially expressed transcripts in the cumulus of competent oocytes collected at 6 h after LH in vivo. Common positive clones between diffentially treated cells were selected, and 15 candidates were validated by real-time PCR. Based on this, the main candidates expressed in cumulus cells and that could be valuable and indirect markers of oocyte competence are hyaluronan synthase 2 (HAS2), inhibin βA (INHBA), epidermal growth factor receptor (EGFR), gremlin 1 (GREM1), betacellulin (BTC), CD44, tumor necrosis factor-induced protein 6 (TNFAIP6), and prostaglandin-endoperoxide synthase 2 (PTGS2). These biomarkers could be potential candidates to predict oocyte competence and to select higher-quality embryos for transfer. Additionally, these indirect predictors of oocyte competence and follicular health could improve our knowledge of gene expression patterns in the cumulus and yield insights into the molecular pathways controlling oocyte competence.
The perinuclear theca (PT) of mammalian sperm is a unique subcellular structure encapsulating the nucleus. Compositionally, the PT is made up of at least six prominent polypeptides (60, 36, 31, 28, 24, and 15 kDa), of which only two have been sequence identified, as well as many less prominent ones. As an ongoing process in unveiling the protein composition of the PT, we have uncovered the sequence identity of the prominent 24-kDa polypeptide (PT24). Initial N-terminal sequence analysis obtained by Edman degradation suggested that PT24 is a RAB2 protein. This was corroborated by mass spectrometric analyses of trypsin-digested fragments of PT24, identifying RAB2A of the RAB2 subfamily as the best sequence match. Quadrapole/time-of-flight analysis identified 72%% sequence coverage between PT24 and bull, human, mouse, or rabbit RAB2A. Since a genome search only identified two RAB2 subfamily members, RAB2A and RAB2B, the 72%% sequence coverage of PT24 provides assurance that this protein is RAB2A and not a new RAB2 subfamily member. Furthermore, commercial RAB2A antibodies, raised against oligopeptide fragments in the unique C-terminal region of RAB2A, specifically labeled PT24 on Western blot analysis of PT extracts. These anti-RAB2A antibodies, along with immune serum that we raised and affinity purified against isolated PT24, demonstrated at both light and electron microscope levels that RAB2 is associated with the periphery of the growing proacrosomic and acrosomic vesicles in the Golgi and cap phases of spermiogenesis and consequently assembled as part of the PT. This pattern of subacrosomal assembly is reminiscent of the pathway used by SubH2Bv (PT15), another prominent and exclusive subacrosomal protein, indicating a common route for subacrosomal-PT assembly. Traditionally somatic RAB2 proteins are involved in vesicular transport between the endoplasmic reticulum and the cis-side of the Golgi apparatus. Our study suggests an unprecedented direction of RAB2A-mediated vesicular transport in spermatids during acrosomal biogenesis, from the trans-side of the Golgi apparatus to the nuclear envelope.
Mucin (MUC)1 is a multifunctional mucin expressed by a variety of reproductive tract epithelia. Trophoblast invasion is essential for normal placental development. However, MUC1 expression in the human placenta throughout pregnancy and the role of MUC1 in trophoblast-like cell invasion are still unclear. In the present study, results from quantitative RT-PCR and Western blot demonstrated that MUC1 mRNA and MUC1 protein expression, respectively, increased with gestational age of the human placenta. Immunohistochemistry revealed that MUC1 in placental villi was mainly expressed by syncytiotrophoblasts throughout pregnancy and increased with gestational age. Interestingly, we found two populations of extravillous trophoblasts, MUC1-positive and MUC1-negative cells, in decidua. The numbers of MUC1-positive extravillous trophoblasts were increased during placental development. Furthermore, MUC1 overexpression significantly (P < 0.01) suppressed matrigel invasion of trophoblast-like JAR cells by 34.6% ± 4.5% compared with control, which was associated with a decrease in MMP9 activity assessed by gelatin zymography. Our results suggest that MUC1 expression in the human placenta is increased during placental development, and its overexpression suppresses trophoblast-like cell invasion in vitro.
The South American plains vizcacha, Lagostomus maximus, displays an exceptional ovulation rate of up to 800 eggs per cycle, the highest rate recorded for a mammal. Massive polyovulation arises from the overexpression of the apoptosis-inhibiting BCL2 gene leading to a suppression of apoptotic pathways responsible for follicular atresia in mammals. We analyzed the ovarian histology, ovarian apoptosis, and apoptosis-related protein expression with special emphasis in corpora lutea throughout the 5-mo-long gestation period, at parturition day and early postpartum, in L. maximus. Corpora lutea were abundant throughout gestation with no sign of structural regression even at the end of gestation. Both immunohistochemistry and Western blot analysis showed strong signals for apoptosis-inhibiting BCL2 protein, whereas the proapoptotic BAX protein was just detected in isolated luteal cells in gestating females and postpartum females. Apoptosis-associated DNA fragmentation detected by TUNEL was very scarce and occasional and correlated with BAX detection in luteal cells. Marked expression of progesterone and α-estrogen receptors in luteal cells was found at early, mid-, and late gestation as well as at parturition day and early postpartum samples. Additionally, serum level of progesterone increased markedly to reach maximal values at late gestation and decreasing at parturition to levels found at early gestation, suggesting that corpora lutea remained functional throughout gestation. These results point out that the unusual ovarian environment of L. maximus in which germ cell demise is abolished through antiapoptotic BCL2 gene overexpression also preserves structural integrity and functionality of corpora lutea during the whole gestation. Overexpression of antiapoptotic BCL2 gene may represent a strategy for an essential need of ovary and corpora lutea in order to maintain pregnancy until term.
Animal mitochondrial DNA (mtDNA) is predominantly inherited maternally. Various mechanisms to avoid the transmission of paternal mtDNA to offspring have been proposed, including the dilution of paternal mtDNA by maternal mtDNA in the zygote. The effectiveness of dilution as a barrier will be determined by the number of mtDNA molecules contributed by each parental gamete, and is expected to be highly variable among different taxa due to interspecific differences in mating systems and gamete investment. Estimates of this ratio are currently limited to few mammalian species, and data from other taxa are therefore needed to better understand the mechanisms of mitochondrial inheritance. The present study estimates mtDNA content in salmon sperm, the first nonmammalian vertebrate to be examined. Although highly divergent, it appears that the mtDNA content may be conserved within vertebrate taxa, indicating that the reduction of mtDNA is a key factor of spermatogenesis to ensure mitochondrial functionality on the one hand, and to avoid paternal leakage at a significant or detectable level on the other hand. We employ quantitative real-time PCR (Q-PCR) and demonstrate the accuracy and high reproducibility of our experiments. Furthermore, we compare and evaluate two standard approaches used for the quantification of genes, Q-PCR and blotting methods, in regard to their utility in the accurate quantification of mitochondrial genes.
Adenosine triphosphate-sensitive K (KATP) channels are poorly characterized in the reproductive tract. The present study was designed to evaluate the putative expression of KATP channel subunits (Kir6.x and SURx) in the epididymis from different mammalian species. Immunohistochemical, Western blot, and RT-PCR techniques were used. A positive immunostaining for Kir6.2 (KCNJ11) and SUR2 (ABCC9) was observed by immunoenzymatic and immunofluorescent approaches in the principal epithelial cells throughout all regions of the rat and mouse epididymis. Double labeling with anti-aquaporin 9 (AQP9) and anti-Kir6.2 (KCNJ11) confirmed their colocalization in the principal cells. No immunostaining could be demonstrated for Kir6.1 (KCNJ8) and SUR1 (ABCC8) subunits. Under higher magnification, the immunostaining for Kir6.2 (KCNJ11) exhibited a cytoplasmic labeling that was more intense at the level of the Golgi apparatus along the whole epididymis. A similar pattern was observed for SUR2 (ABCC9), although in the latter case, the Golgi labeling appeared to be region specific. Spermatozoa in epididymal tubules from rodents also immunostained for Kir6.2 (KCNJ11) and SUR2 (ABCC9). Western blot analysis of epididymal total protein and crude membrane extracts from adult and prepubertal rats confirmed the presence of Kir6.2 (KCNJ11). SUR2 (ABCC9) protein expression was detected in adult epididymal extracts. Furthermore, RT-PCR established the presence of Kir6.2 (KCNJ11) and SUR2 (ABCC9) mRNA in prepubertal and adult mouse epididymis. Indirect immunofluorescence also documented the presence of Kir6.2 (KCNJ11) and SUR2 (ABCC9) in the epididymal epithelium, as well as in spermatozoa, of canine, feline, bovine, and human origin. These data demonstrate the presence of the KATP channel subunits, Kir6.2 (KCNJ11) and SUR2 (ABCC9), in epididymal epithelial cells and spermatozoa from several mammalian species. Although their physiological roles need to be fully characterized, it is tempting to propose that such types of K channels might be involved in protein secretion and fluid-electrolyte transport occurring along the epididymal epithelium, leading to spermatozoa maturation.
Worldwide, almost 100 million men rely on vasectomy for male contraceptive purposes. Due to changes in their personal lives, an increasing number of these men request surgical vasectomy reversal. Unfortunately, a significant proportion of these men remain infertile, despite the reestablishment of patent ducts, possibly due to epididymal damage caused by vasectomy. In animal models, vasectomy affects different epididymal physiological and biochemical parameters. However, the consequences of vasectomy on epididymal function are poorly understood. Furthermore, results obtained with animal models cannot be extrapolated to humans to understand the consequences of vasectomy on epididymal function. Gene expression along the epididymis is highly regulated. We previously showed that the human epididymal expression pattern of two genes is altered after vasectomy. To complete the list of epididymal genes affected by vasectomy, we analyzed the epididymal gene expression pattern of three vasectomized donors using the Affymetrix human GeneChip U133 Plus 2. These results were compared with the gene expression pattern of three “normal” donors. The data generated allowed the identification of many human epididymal genes for which expression is modified after vasectomy. Quantitative (Qt)-PCR and Western blot analysis of six selected genes known to be expressed in specific epididymal segments were performed. The Qt-PCR results confirmed the selected transcripts expression pattern deduced from microarray data. However, Western blot analysis revealed some differences in protein distribution along the epididymis when compared with the encoding transcripts expression pattern. These results contribute to an understanding of the reasons why fertility is not recovered in vasovasostomized men, even though spermogram values suggest surgical success of vasectomy reversal.
In the bovine synepitheliochorial placenta, restricted trophoblast invasion requires complex interactions of integrin receptors with proteins of the extracellular matrix (ECM) and integrin receptors of neighboring cells. Activated integrins assemble to focal adhesions and are linked to the actin cytoskeleton via signaling molecules including alpha-actinin (ACTN), focal adhesion kinase (PTK2 or FAK), phosphotyrosine, and talin (TLN1). Aims of this study were to assess integrin activation and focal adhesion assembly within epithelial cells of bovine placentomes and low-passage (not transformed) placentomal caruncular epithelial cells cultured on dishes coated with ECM proteins. Immunofluorescence analysis was performed to colocalize the signaling molecules ACTN, PTK2, phosphotyrosine, and TLN1 with each other and with beta1-integrin (ITGB1) in placentomal cryosections throughout pregnancy and in caruncular epithelial cells in vitro. Antibody specificity was confirmed by Western blot. Cells were cultured on uncoated dishes, and the dishes were coated with fibronectin (FN), laminin (LAMA), and collagen type IV (COL4), thereby statistically assessing cell number and qualitatively assessing the expression pattern of ITGB1, phosphotyrosine, and TLN1. Results demonstrated integrin activation and focal adhesion assembly in the placentome and that low-passage caruncular epithelial cells maintain integrin-associated properties observed in vivo. Expression and/or colocalization of signaling molecules with ITGB1 confirmed, for the first time, integrin activation and participation in “outside-in” and “inside-out” signaling pathways. The prominent role of ECM, and FN in particular, in integrin signaling is supported by the in vitro enhancement of proliferation and focal adhesion expression. Thus, this in vitro model provides excellent potential for further mechanistic studies designed to elucidate feto-maternal interactions in the bovine placentome.
The Hspa1b gene is one of the first genes expressed after fertilization, with expression observed in the male pronucleus as early as the one-cell stage of embryogenesis. This expression can occur in the absence of stress and is initiated during the minor zygotic genome activation. There is a significant reduction in the number of embryos developing to the blastocyte stage when HSPA1B levels are depleted, which supports the importance of this protein for embryonic viability. However, the mechanism responsible for allowing expression of Hspa1b during the minor zygotic genome activation (ZGA) is unknown. In this report, we investigated the role of HSF1 and HSF2 in bookmarking Hspa1b during late spermatogenesis. Western blot results show that both HSF1 and HSF2 are present in epididymal spermatozoa, and immunofluorescence analysis revealed that some of the HSF1 and HSF2 proteins in these cells overlap the 4′,6′-diamidino-2-phenylindole-stained DNA region. Results from chromatin immunoprecipitation assays showed that HSF1, HSF2, and SP1 are bound to the Hspa1b promoter in epididymal spermatozoa. Furthermore, we observed an increase in HSF2 binding to the Hspa1b promoter in late spermatids versus early spermatids, suggesting a likely period during spermatogenesis when transcription factor binding could occur. These results support a model in which the binding of HSF1, HSF2, and SP1 to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Because of their prominent roles in regulation of gene expression, it is important to understand how levels of Krüpple-like transcription factors SP1 and SP3 change in germ cells during spermatogenesis. Using immunological techniques, we found that both factors decreased sharply during meiosis. SP3 declined during the leptotene-to-pachytene transition, whereas SP1 fell somewhat later, as spermatocytes progressed beyond the early pachytene stage. SP3 reappeared for a period in round spermatids. For Sp1, the transition to the pachytene stage is accompanied by loss of the normal, 8.2-kb mRNA and appearance of a prevalent, 8.8-kb variant, which has not been well characterized. We have now shown that this pachytene-specific transcript contains a long, unspliced sequence from the first intron and that this sequence inhibits expression of a reporter, probably because of its many short open-reading frames. A second testis-specific Sp1 transcript in spermatids of 2.4 kb also has been reported previously. Like the 8.8-kb variant, it is compromised translationally. We have confirmed by Northern blotting that the 8.8-, 8.2-, and 2.4-kb variants account for the major testis Sp1 transcripts. Thus, the unexpected decline of SP1 protein in the face of continuing Sp1 transcription is explained, in large part, by poor translation of both novel testis transcripts. As part of this work, we also identified five additional, minor Sp1 cap sites by 5′ rapid amplification of cDNA ends, including a trans-spliced RNA originating from the Glcci1 gene.
The present study was undertaken to discover molecular markers in bovine cumulus cells predictive of oocyte competence and to elucidate their functional significance. Differences in RNA transcript abundance in cumulus cells harvested from oocytes of adult versus prepubertal animals (a model of poor oocyte quality) were identified by microarray analysis. Four genes of interest encoding for the lysosomal cysteine proteinases cathepsins B, S, K, and Z and displaying greater transcript abundance in cumulus cells surrounding oocytes harvested from prepubertal animals were chosen for further investigation. Greater mRNA abundance for such genes in cumulus cells of prepubertal oocytes was confirmed by real-time RT-PCR. Elevated transcript abundance for cathepsins B, S, and Z also was observed in cumulus cells surrounding adult metaphase II oocytes that developed to the blastocyst stage at a low percentage following parthenogenetic activation versus those that developed at a high percentage. Functional significance of cumulus cell cathepsin expression to oocyte competence was confirmed by treatment of cumulus-oocyte complexes during in vitro oocyte maturation with a cell-permeable cysteine proteinase (cathepsin) inhibitor. Inhibitor treatment decreased apoptotic nuclei in the cumulus layer and enhanced development of parthenogenetically activated and in vitro-fertilized adult oocytes to the blastocyst stage. Stimulatory effects of inhibitor treatment during meiotic maturation on subsequent embryonic development were not observed when oocytes were matured in the absence of cumulus cells. The present results support a functional role for cumulus cell cathepsins in compromised oocyte competence and suggest that cumulus cell cathepsin mRNA abundance may be predictive of oocyte quality.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8–12 of the cycle) were treated for 24 h with PGE2 (0.001–1 μM) and PGF2alpha (0.001–1 μM). Prostaglandin E2 (1 μM) and PGF2alpha (1 μM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.
Repeated daily dosing of rats with the occupational chemical 4-vinylcyclohexene diepoxide (VCD) depletes the ovary of primordial and primary follicles through an increase in the natural process of atresia. Additionally, in vitro exposure of Postnatal Day 4 (PND 4) rat ovaries to VCD causes similar follicular depletion. This study was designed to investigate survival signaling pathways that may be associated with VCD-induced ovotoxicity in small preantral follicles. Female Fischer 344 rats (PND 28) were dosed daily (80 mg/kg/day VCD i.p.; 12 days in vivo), and PND 4 ovaries were cultured (VCD 20 or 30 μM; 8 days in vitro). Microarray analysis identified a subset of 14 genes whose expression was increased or decreased by VCD in both experiments (i.e., via both exposure routes). Particularly, the analysis showed that relative to controls, VCD did not affect mRNA expression of growth and differentiation factor 9 (Gdf9), whereas there were decreases in mRNA encoding bone morphogenic protein receptor 1a (Bmpr1a) and Kit. To confirm findings from microarray, the genes Gdf9, Bmpr1a, and Kit were further examined. When growth factors associated with these pathways were added to ovarian cultures during VCD exposure, GDF9 and BMP4 had no effect on VCD-induced ovotoxicity; however, KITL attenuated this follicle loss. Additionally, there was a decrease in Kit and an increase in Kitl expression (mRNA and protein) following VCD exposure, relative to control. These results support that VCD compromises KIT/KITL signaling, which is critical for follicular survival in primordial and primary follicles.
Approximately half of all infertility cases can be attributed to male reproductive dysfunction for which low sperm count is a major contributing factor. The current study identified receptor-mediated lysophosphatidic acid (LPA) signaling as a new molecular component influencing male fertility. LPA is a small signaling phospholipid, the effects of which are mediated through at least five G protein-coupled receptors, named LPA 1–5. LPA1/2/3, but not LPA4/5, show high expression in mouse testis. Mice deficient in LPA1/2/3 showed a testosterone-independent reduction of mating activity and sperm production, with an increased prevalence of azoospermia in aging animals. A significant increase of germ cell apoptosis also was observed in testes. Germ cell apoptosis led to a reduction in germ cell proliferation. These data demonstrate a novel in vivo function for LPA signaling as a germ cell survival factor during spermatogenesis.
Proteins in the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein family (YWHA; also known as 14-3-3) are involved in the regulation of many intracellular processes. We have examined the interaction of YWHA with peptidylarginine deiminase type VI (PADI6), an abundant protein in mammalian oocytes, eggs, and early embryos. Peptidylarginine deiminases catalyze the posttranslational modification of peptidylarginine to citrulline. PADI6 is associated with oocyte cytoplasmic sheets, and PADI6-deficient mice are infertile because of disruption of development beyond the two-cell stage. We found that PADI6 undergoes a dramatic developmental change in phosphorylation during oocyte maturation. This change in phosphorylation is linked to an interaction of PADI6 with YWHA in the mature egg. Recombinant glutathione S-transferase YWHA pull-down experiments and transgenic tandem affinity purification with liquid chromatography-mass spectrometry demonstrate a binding interaction between YWHA and PADI6 in mature eggs. YWHA proteins modulate or complement intracellular events involving phosphorylation-dependent switching or protein modification. These results indicate that phosphorylation and/or YWHA binding may serve as a means of intracellular PADI6 regulation.
The present study investigated the ability of surfactant associated protein A1 (SFTPA1), a major component of lung surfactant, to bind and serve as a signal in human cultured myometrial cells. By using ligand blot analysis with 125I-SFTPA1, we consistently identified two myometrial SFTPA1 interacting proteins (55 and 200 kDa). We found that the SFTPA1 immunoreactive protein was present in myometrial cells. We also showed by indirect immunofluorescence the nuclear translocation of RELA (also known as NFkappaB p65 subunit) after activation of myometrial cells by SFTPA1. Neutralization of TLR4 did not reverse this effect. Moreover, SFTPA1 rapidly activated mitogen-activated protein kinase 1/3 (MAPK1/3) and protein kinase C zeta (PRKCZ). The prolonged treatment of myometrial cells with SFTPA1 upregulated PTGS2 (COX2) protein levels. We next evaluated whether SFTPA1 affected the actin dynamic. Stimulation of myometrial cells with SFTPA1 markedly enhanced the intensity of the filamentous-actin pool stained with fluorescein isothiocyanate-phalloidin. Inhibition of PRKC or Rho-associated, coiled-coil containing protein kinase 1 (ROCK) reduced the SFTPA1-mediated stress fiber formation. Our data support the hypothesis that human myometrial cells express functional SFTPA1 binding sites and respond to SFTPA1 to initiate activation of signaling events related to human parturition.
Molecular mechanisms involved in sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus) have been studied. Our comparative study demonstrates that osmolality is the key signal in sperm motility activation in both species, whereas K and Ca2 do not have any role. The straight-line velocity that resulted, however, was significantly different when measured in sperm activated with non-ionic and/or calcium-free solutions with respect to that measured in seawater-activated sperm. In both species, motility initiation depends on cAMP-dependent protein phosphorylation. The phosphorylation/dephosphorylation patterns that resulted in gilthead and striped sea bream were quite different. In gilthead sea bream, the phosphorylated proteins have molecular weights of 174, 147, 138, 70, and 9-15 kDa, whereas the dephosphorylated proteins have molecular weights of 76, 57, and 33 kDa. In striped sea bream, phosphorylation after sperm motility activation occurred on proteins of 174, 147, 103, 96, 61, 57, and 28 kDa, whereas only one protein of 70 kDa resulted from dephosphorylation. Matrix-assisted laser desorption ionization-time of flight analyses allowed identification of the following proteins: In gilthead sea bream, the 9-15 kDa proteins that were phosphorylated after motility activation include an A-kinase anchor protein (AKAP), an acetyl-coenzyme A synthetase, and a protein phosphatase inhibitor, and in striped sea bream, 103- and 61-kDa proteins that were phosphorylated after motility activation were identified as a phosphatase (myotubularin-related protein 1) and a kinase (DYRK3), respectively.
Whether the main energy source for sperm motility is from oxidative phosphorylation or glycolysis has been long-debated in the field of reproductive biology. Using the rhesus monkey as a model, we examined the role of glycolysis and oxidative phosphorylation in sperm function by using alpha-chlorohydrin (ACH), a glycolysis inhibitor, and pentachlorophenol (PCP), an oxidative phosphorylation uncoupler. Sperm treated with ACH showed no change in percentage of motile sperm, although sperm motion was impaired. The ACH-treated sperm did not display either hyperactivity- or hyperactivation-associated changes in protein tyrosine phosphorylation. When treated with PCP, sperm motion parameters were affected by the highest level of PCP (200 μM); however, PCP did not cause motility impairments even after chemical activation. Sperm treated with PCP were able to display hyperactivity and tyrosine phosphorylation after chemical activation. In contrast with motility measurements, treatment with either the glycolytic inhibitor or the oxidative phosphorylation inhibitor did not affect sperm-zona binding and zona-induced acrosome reaction. The results suggest glycolysis is essential to support sperm motility, hyperactivity, and protein tyrosine phosphorylation, while energy from oxidative phosphorylation is not necessary for hyperactivated sperm motility, tyrosine phosphorylation, sperm-zona binding, and acrosome reaction in the rhesus macaque.
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.
Development of follicular cysts is a frequent ovarian dysfunction in cattle. Functional changes that precede cyst formation are unknown, but a role for anti-Müllerian hormone (AMH) in the development of follicular cysts has been suggested in humans. This study aimed to characterize intrafollicular steroids and AMH during follicular growth in a strain of beef cows exhibiting a high incidence of occurrence of follicular cysts. Normal follicular growth and cyst development were assessed by ovarian ultrasonography scanning during the 8 days before slaughtering. Experimental regression of cysts was followed by rapid growth of follicles that reached the size of cysts within 3–5 days. These young cysts exhibited higher intrafollicular concentrations of testosterone, estradiol-17beta, and progesterone than large early dominant follicles did in normal ovaries, but they exhibited similar concentrations of AMH. Later-stage cysts were characterized by hypertrophy of theca interna cells, high intrafollicular progesterone concentration, and high steroidogenic acute regulatory protein mRNA expression in granulosa cells. Progesterone and AMH concentrations in the largest follicles (≥10 mm) and cysts were negatively correlated (r == −0.45, P << 0.01). Smaller follicles (<<10 mm) exhibited higher intrafollicular testosterone and estradiol-17beta concentrations in ovaries with cysts compared to normal ovaries. During follicular growth, AMH concentration dropped in follicles larger than 5 mm in diameter and in a similar way in ovaries with and without cysts. In conclusion, enhanced growth and steroidogenesis in antral follicles <<10 mm preceded cyst formation in cow ovaries. Intrafollicular AMH was not a marker of cystic development in the cow, but low AMH concentrations in cysts were associated with luteinization.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere