Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
It is increasingly evident that environmental factors are a veritable Pandora's box from which new concerns and complications continue to emerge. Although previously considered the domain of toxicologists, it is now clear that an understanding of the effects of the environment on reproduction requires a far broader range of expertise and that, at least for endocrine-disrupting chemicals, many of the tenets of classical toxicology need to be revisited. Indeed, because of the wide range of reproductive effects induced by these chemicals, interest among reproductive biologists has grown rapidly: in 2000, the program for the annual Society for the Study of Reproduction meeting included a single minisymposium on the fetal origins of adult disease, one platform session on endocrine disruption, and 23 toxicology poster presentations. In contrast, environmental factors featured prominently at the 2009 meeting, with strong representation in the plenary, minisymposia, platform, and poster sessions. Clearly, a lot has happened in a decade, and environmental issues have become an increasingly important research focus for reproductive biologists. In this review, we summarize some of the inherent difficulties in assessing environmental effects on reproductive performance, focusing on the endocrine disruptor bisphenol A (BPA) to illustrate important emerging concerns. In addition, because the BPA experience serves as a prototype for scientific activism, public education, and advocacy, these issues are also discussed.
Conceptus implantation involves pregnancy-specific alterations in extracellular matrix at the conceptus-maternal interface. Secreted phosphoprotein 1 (SPP1, osteopontin) is induced just before implantation and is present at the conceptus-maternal interface in mammals. In the present study, we investigated mechanisms by which SPP1 facilitates porcine conceptus and uterine luminal epithelial cell attachment. Native bovine milk and wild-type rat recombinant SPP1 stimulated trophectoderm cell migration. Bovine milk SPP1, ovine uterine SPP1, and recombinant wild-type, but not mutated, rat SPP1 promoted dose- and cation-dependent attachment of porcine trophectoderm and uterine luminal epithelial cells, which was markedly reduced in the presence of a linear Arg-Gly-Asp integrin-blocking peptide. Affinity chromatography and immunoprecipitation experiments revealed direct binding of alphavbeta6 trophectoderm and alphavbeta3 uterine epithelial cell integrins to SPP1. Immunofluorescence microscopy using SPP1-coated microspheres revealed colocalization of the alphav integrin subunit and talin at focal adhesions as well as at the apical domain of trophectoderm cells. Similarly, immunofluorescence staining of implantation sites in frozen gravid uterine cross sections localized SPP1 and alphav integrin to the apical surfaces of trophectoderm and luminal epithelium and beta3 integrin to the apical surface of luminal epithelium. To our knowledge, the present study is the first to demonstrate functionally that SPP1 directly binds specific integrins to promote trophectoderm cell migration and attachment to luminal epithelium that may be critical to conceptus elongation and implantation.
Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [3H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.
Mouse oocytes produce members of the transforming growth factor beta (TGFbeta) superfamily, including bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), as well as fibroblast growth factors (FGFs). These growth factors cooperate to regulate cumulus cell function. To identify potential mechanisms involved in these interactions, the ability of fully grown oocytes to regulate expression of BMP or FGF antagonists in cumulus cells was examined. Oocytes promoted cumulus cell expression of transcripts encoding antagonists to TGFbeta superfamily members, including Grem2, Htra1, Htra3, and Nog mRNAs. In contrast, oocytes suppressed cumulus cell expression of Spry2 mRNA, which encodes a regulator of receptor tyrosine kinase signals, such as FGF and epidermal growth factor (EGF) receptor signals. The regulation of Spry2 mRNA levels in cumulus cells was studied further as a model for analysis of potential mechanisms for cooperativity of FGF/EGF signaling with oocyte-derived members of the TGFbeta superfamily. Oocytes suppressed basal and FGF-stimulated Spry2 mRNA levels in cumulus cells but promoted EGF-stimulated levels. Furthermore, recombinant TGFbeta superfamily proteins, including BMP15 and GDF9, mimicked these effects of oocytes. Elevated expression of Spry2 mRNA in cumulus and mural granulosa cells correlated with human chorionic gonadotropin-induced expression of mRNAs encoding EGF-like peptides. Therefore, oocyte-derived members of the TGFbeta superfamily suppress FGF-stimulated Spry2 mRNA levels before the luteinizing hormone surge but promote Spry2 mRNA levels stimulated by EGF receptor-mediated signals after the surge.
Overactive WNT/beta-catenin signaling has been found in many forms of cancer in human patients. Mouse models with mutations in different components of the WNT/beta-catenin signaling pathway have been generated to mimic tumorigenesis in humans. Mice with mutations that result in overactive WNT/beta-catenin signaling developed tumors in some tissues, such as digestive tract, skin, and ovary, but they failed to develop tumors in other tissues, such as mammary gland, liver, kidney, and primordial germ cells. To investigate whether overactive beta-catenin signaling is capable of inducing Sertoli cell tumorigenesis in testes, we generated Ctnnb1tm1Mmt/ ;Tg(AMH-cre)1Flor male mice that express a constitutively active form of beta-catenin specifically in Sertoli cells. No tumors were observed at 4 mo of age, but 70% of the mutant males developed Sertoli cell tumors at 8 mo of age. At 1 yr of age, more than 90% of the mutant males developed tumors. No instances of extratesticular spread of the tumors were found in the mutant mice. These studies show a causal link between overactive WNT/beta-catenin signaling and Sertoli cell tumor development and provide a novel mouse model for the study of Sertoli cell tumor biology.
Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting step of the mevalonate pathway. The pleiotropic effects of statins may be due to inhibition of cholesterol synthesis, as well as decreased availability of several biologically important intermediate components of the mevalonate pathway, including two substrates for isoprenylation (farnesyl pyrophosphate [FPP] and geranylgeranyl pyrophosphate [GGPP]). Recently, we demonstrated statin-induced inhibition of ovarian theca-interstitial cell proliferation in vitro, as well as reduction of testosterone levels in women with polycystic ovary syndrome (PCOS). This study evaluates the relative contribution of inhibition of isoprenylation and/or cholesterol availability to the modulation of theca-interstitial proliferation. Rat theca-interstitial cells were cultured in chemically defined media with or without simvastatin, FPP, GGPP, squalene, and/or two membrane-permeable forms of cholesterol (25-hydroxycholesterol and 22-hydroxycholesterol). Simvastatin inhibited DNA synthesis and the count of viable cells. The effects of simvastatin were partly abrogated by FPP and GGPP but not by squalene or cholesterol. Inhibition of farnesyl transferase and geranylgeranyl transferase reduced cell proliferation. The present findings indicate that simvastatin inhibits proliferation of theca-interstitial cells, at least in part, by reduction of isoprenylation. These observations provide likely mechanisms explaining clinically observed improvement of ovarian hyperandrogenism in women with PCOS.
Sylvie Mugnier, Maria Elena Dell'Aquila, Jesus Pelaez, Cécile Douet, Barbara Ambruosi, Teresa De Santis, Giovanni Michele Lacalandra, Claude Lebos, Pierre-Yves Sizaret, Bernadette Delaleu, Philippe Monget, Pascal Mermillod, Michèle Magistrini, Stuart A. Meyers, Ghylène Goudet
KEYWORDS: acrosome reaction, confocal microscopy, fertilization, gamete biology, gamete interaction, ICSI, in vitro fertilization, oocyte, SEM, spermatozoa, TEM, zona pellucida
The mechanism of fertilization remains largely enigmatic in mammals. Most studies exploring the molecular mechanism underlying fertilization have been restricted to a single species, generally the mouse, without a comparative approach. However, the identification of divergences between species could allow us to highlight key components in the mechanism of fertilization. In the pig, in vitro fertilization (IVF) and polyspermy rates are high, and spermatozoa penetrate easily through the zona pellucida (ZP). In contrast, IVF rates are low in the horse, and polyspermy is scarce. Our objective was to develop a comparative strategy between these two divergent models. First, we compared the role of equine and porcine gametes in the following five functions using intraspecific and interspecific IVF: ZP binding, acrosome reaction, penetration through the ZP, gamete fusion, and pronucleus formation. Under in vitro conditions, we showed that the ZP is a determining element in sperm-ZP attachment and penetration, whereas the capacity of the spermatozoa is of less importance. In contrast, the capacity of the spermatozoa is a key component of the acrosome reaction step. Second, we compared the composition and structure of the equine and porcine ZP. We observed differences in the number and localization of the ZP glycoproteins and in the mesh-like structure of the ZP between equine and porcine species. These differences might correlate with the differences in spermatozoal attachment and penetration rates. In conclusion, our comparative approach allows us to identify determining elements in the mechanism of fertilization.
The blood-testis barrier (BTB) is formed by tight junctions between Sertoli cells. Results of previous studies suggested that the barrier is deficient in ets variant 5 (ETV5) gene-deleted mice; therefore, microarray data were examined for changes in tight junction-associated genes. The tight junctional protein claudin 5 (CLDN5) was decreased in testes of 8-day-old Etv5−/− pups. The study reported herein examined the expression of CLDN5 in wild-type (WT) and Etv5−/− mice and evaluated its contribution to BTB function. CLDN5 protein expression was evaluated in 8-day-old WT and Etv5−/− and adult WT, Etv5−/−, and W/Wv testes by immunohistochemistry and in 8-day-old WT Sertoli cell-enriched and germ cell-enriched fractions by immunocytochemistry. Cldn5 mRNA expression was evaluated in 0- to 20-day-old and adult WT mice and in 8-day-old and adult Etv5−/− mice via quantitative PCR. Tracer studies were performed in adult WT, Etv5−/−, and W/Wv mice. The results indicate the following: 1) CLDN5 was expressed in Sertoli cells, spermatogonia, and preleptotene spermatocytes. 2) Seminiferous epithelial CLDN5 expression depended upon both the presence of germ cells and ETV5. 3) CLDN5 expression in testicular vascular endothelium and rete testis epithelium was ETV5 independent. 4) Cldn5 mRNA expression increased in the testes of juvenile mice at the time of BTB formation. 5) Testes of Etv5−/− and W/Wv mice, which are both deficient in seminiferous epithelial CLDN5 expression, had biotin tracer leakage from the interstitial space into the seminiferous tubule lumen. In conclusion, CLDN5 is expressed in the seminiferous epithelium, appears to be regulated by multiple influences, and contributes to BTB function.
The expression of aquaporins in the spermatozoa of the marine teleost gilthead sea bream (Sparus aurata) and their involvement in the motility activation process were investigated. Sperm motility was activated by a hyperosmotic shock, but it was completely inhibited by 10 μM HgCl2, such inhibition being partially recovered by beta-mercaptoethanol (ME). Conventional RT-PCR using primers specific for S. aurata aquaglyceroporin (glp) and aquaporin 1a (aqp1a) demonstrated the presence of both mRNAs in spermatozoa. Heterologous expression in Xenopus laevis oocytes showed that 10 and 100 μM HgCl2 equally inhibited water and solute transport through S. aurata aquaporin 1a and S. aurata aquaglyceroporin, but treatment with ME only recovered aquaporin 1a-mediated water permeability. Western blot analysis using isoform-specific antisera on protein extracts from spermatozoa revealed bands that corresponded to the predicted molecular mass of S. aurata aquaglyceroporin (31 kDa) and S. aurata aquaporin 1a (28 kDa). The antisera also demonstrated that both aquaporins were localized in the head and flagellum of the spermatozoa. However, the immunoreaction at the plasma membrane of the spermatozoa head was more intense after the hyperosmotic activation, suggesting the translocation of both aquaporin 1a and aquaglyceroporin into the plasma membrane after the osmotic shock. This study therefore provides the first direct demonstration for the presence of aquaporins in fish sperm. The different sensitivities of S. aurata aquaporin 1a and S. aurata aquaglyceroporin to ME may explain the failure of this reducing agent to fully recover the mercurial inhibition of sperm motility, suggesting that these aquaporins may play different physiological roles during the activation and maintenance of sperm motility in sea bream.
Equatorin (MN9 antigenic molecule) is a widely distributed acrosomal protein in mammalian sperm. During the acrosome reaction, some amount of equatorin translocates to the plasma membrane, covering the equatorial region. From the results of studies of both in vitro and in vivo fertilization inhibition using the MN9 antibody, equatorin has been suggested to be involved in fusion with the oolemma. In the present study, we cloned equatorin and, using mass spectrometry and carbohydrate staining, found it to be a highly glycosylated protein. Equatorin is a sperm-specific type 1 transmembrane protein, and glycosidase treatment and recombinant protein assays verified that it is an N,O-sialoglycoprotein. In addition, the gamete interaction-related domain recognized by the MN9 antibody is posttranslationally modified. The modified domain was identified near threonine 138, which was most likely to be O-glycosylated when analyzed by amino acid substitution, dephosphorylation, and O-glycosylation inhibitor assays. Immunogold electron microscopy localized the equatorin N-terminus, where the MN9 epitope is present, on the acrosomal membrane facing the acrosomal lumen. These biochemical properties and the localization of equatorin are important for further analysis of the translocation mechanism leading to gamete interaction.
Testis germ cell transplantation in livestock has the potential for production of transgenic genotypes and for use as an alternative to artificial insemination in animal breeding systems. In a pilot experiment, we investigated a workable protocol for testis germ cell transplantation in sheep, including donor cell isolation, rete testis injection, and microsatellite detection of donor spermatozoa in recipient semen. In a second experiment, the effect of depletion of endogenous stem cells with a single irradiation dose of 9 Gy (n = 5) or 15 Gy (n = 5) on the outcome of germ cell transplantation was investigated. Irradiation of recipient testes with a single dose of 15 Gy, followed by transplantation 6 wk after depletion, may be most advantageous because it resulted in all recipients (five of five) producing donor-derived spermatozoa, while the 9-Gy and control groups had limited success rates (two of five and one of three, respectively). Using microsatellite markers to detect the presence of donor DNA, 10 rams were identified that produced spermatozoa of donor origin. The proportion of donor DNA was between 1% and 30% of total ejaculate DNA. When three of these positive rams were used in breeding experiments, four donor-derived offspring (four of 50 [8% of progeny])resulted from a recipient in Merino to Merino transplantation. Six lambs (six of 41 [15% of progeny]) were sired by donor-derived Border Leicester sperm produced in a Merino recipient ram; however, no donor-derived offspring were detected among 34 progeny from a second Border Leicester to Merino combination. These results confirm that preparation of recipient animals with a correct dose of irradiation not only enhances the success rate of the transplantation procedure but also increases the proportion of donor spermatozoa in recipient semen. This study represents the first report of the production of live progeny following testis germ cell transplantation using irradiated recipients in a livestock species.
To increase our understanding of imprinted genes in swine, we carried out a comprehensive analysis of this gene family using two complementary approaches: expression and phenotypic profiling of parthenogenetic fetuses, and analysis of imprinting by pyrosequencing. The parthenote placenta and fetus were smaller than those of controls but had no obvious morphological differences at Day 28 of gestation. By Day 30, however, the parthenote placentas had decreased chorioallantoic folding, decreased chorionic ruggae, and reduction of fetal-maternal interface surface in comparison with stage-matched control fetuses. Using Affymetrix Porcine GeneChip microarrays and/or semiquantitative PCR, brain, fibroblast, liver, and placenta of Day 30 fetuses were profiled, and 25 imprinted genes were identified as differentially expressed in at least one of the four tissue types: AMPD3, CDKN1C, COPG2, DHCR7, DIRAS3, IGF2 (isoform specific), IGF2AS, IGF2R, MEG3, MEST, NAP1L5, NDN, NNAT, OSBPL1A, PEG3, APEG3, PEG10, PLAGL1, PON2, PPP1R9A, SGCE, SLC38A4, SNORD107, SNRPN, and TFPI2. For DIRAS3, PLAGL1, SGCE, and SLC38A4, tissue-specific differences were detected. In addition, we examined the imprinting status of candidate genes by quantitative allelic pyrosequencing. Samples were collected from Day 30 pregnancies generated from reciprocal crosses of Meishan and White Composite breeds, and single-nucleotide polymorphisms were identified in candidate genes. Imprinting was confirmed for DIRAS3, DLK1, H19, IGF2AS, NNAT, MEST, PEG10, PHLDA2, PLAGL1, SGCE, and SNORD107. We also found no evidence of imprinting in ASB4, ASCL2, CD81, COMMD1, DCN, DLX5, and H13. Combined, these results represent the most comprehensive survey of imprinted genes in swine to date.
Sarah Netzel-Arnett, Thomas H. Bugge, Rex A. Hess, Kay Carnes, Brett W. Stringer, Anthony L. Scarman, John D. Hooper, Ian D. Tonks, Graham F. Kay, Toni M. Antalis
An estimated 25%–40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as “easily decapitated” spermatozoa in humans.
An asymmetric distribution of the sexes within the left and right uterine horns has been described in multiple species. A series of experiments were conducted to evaluate the sex ratio (% male) of calves gestated in the left and right uterine horns, as well as the sex ratio of embryos originating from the left and right ovaries of cattle. The sex ratio of calves gestated in the right uterine horn of naturally mated cows was significantly higher compared with the sex ratio of calves gestated in the left uterine horn. In addition, the sex ratio of the left and right uterine horns differed significantly from parity. The sex ratio of embryo transfer calves born following transfer to the left and right uterine horns was not significantly different. Additionally, the proportion of male embryos collected from the right uterine horns was significantly greater than from the left uterine horns of superovulated cows. The sex ratio of embryos collected from the left and right uterine horns of unilaterally ovariectomized cows was not significantly different. However, more female than male embryos were produced when left ovary oocytes fertilized in vitro. In conclusion, the results of these experiments demonstrate that a significantly greater proportion of males are gestated in the right uterine horn of cattle and a greater proportion of females in the left. Additionally, the data indicate that sex-specific selection pressure may be applied to embryos by ovarian factors rather than by the uterine environment.
Although sperm entry into the oocyte-cumulus complex and subsequent sperm penetration through the cumulus matrix to reach the oocyte zona pellucida are essential for mammalian fertilization, the molecular mechanism remains controversial. Previously, we have shown that mouse sperm lacking SPAM1 are capable of penetrating the cumulus matrix despite a delayed dispersal of cumulus cells. We also have identified another sperm hyaluronidase, HYAL5, as a candidate enzyme involved in sperm penetration through the cumulus. In the present study, we produced HYAL5-deficient mice to uncover the functional roles of HYAL5 and SPAM1 in fertilization. The HYAL5-deficient mice were fully fertile and yielded normal litter sizes. In vitro fertilization assays demonstrated that HYAL5-deficient epididymal sperm is functionally normal. We thus conclude that HYAL5 may be dispensable for fertilization. Comparative analysis among wild-type, HYAL5-deficient, and SPAM1-deficient epididymal sperm revealed that only SPAM1 is probably involved in sperm penetration through the cumulus matrix. Notably, the loss of SPAM1 resulted in a remarkably increased accumulation of sperm on the surface or outer edge of the cumulus. These data suggest that SPAM1 may function in sperm entry into the cumulus and sperm penetration through the cumulus matrix.
Tubulointerstitial nephritis antigen-like 1 (Tinagl1, also known as adrenocortical zonation factor 1 [AZ-1] or lipocalin 7) has been cloned from mouse adrenocortical cells and is known to be closely associated with zonal differentiation of adrenocortical cells. In cell culture systems, TINAGL1 is a matricellular protein that interacts with both structural matrix proteins and cell surface receptors. However, the physiological roles of TINAGL1 and regulation of its expression are still not clearly understood. In the present study, the expression and localization of TINAGL1 in peri-implantation mouse embryos was examined. During preimplantation, the expression of both Tinagl1 mRNA and TINAGL1 protein was increased just prior to implantation. In blastocysts, TINAGL1 expression was localized to the trophectoderm. Using a progesterone-treated, delayed-implantation model, TINAGL1 was found to be upregulated in implantation-competent blastocysts after estrogen treatment. During postimplantation, TINAGL1 expression was restricted to extraembryonic regions. Marked expression was detected in the Reichert membrane on Embryonic Days 6.5 (E6.5) and E7.5. Colocalization of laminin 1 and TINAGL1 was also examined. Using an anti-LAMA1 antibody, colocalization of LAMA1 and TINAGL1 was observed in postimplantation embryos. Colocalization was also detected in the Reichert membrane. Immunoprecipitation analysis determined that LAMA1 and TINAGL1 interact in embryos on E7.5. These results demonstrate that after implantation, TINAGL1 is an extraembryonic tissue-specific protein. In particular, TINAGL1 is a novel component of the Reichert membrane that interacts with laminin 1. These results suggest that TINAGL1 most likely plays a physical and physiological role in embryo development at postimplantation.
Aromatase (CYP19A1) catalyzes the conversion of C19 steroids to estrogens. Aromatase and its product estradiol (E2) are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The regulation of aromatase expression in the brain is not well understood. The aromatase (Cyp19a1) gene is selectively expressed in distinct neurons of the hypothalamus through a distal brain-specific promoter I.f located ∼36 kb upstream of the coding region. Here, we investigated a short feedback effect of E2 on aromatase mRNA expression and enzyme activity using estrogen receptor alpha (ESR1; also known as ERalpha)-positive or ESR1-negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. Estradiol regulated aromatase mRNA expression and enzyme activity in a time- and dose-dependent manner, whereas an E2 antagonist reversed these effects. The nucleotide −200/−1 region of promoter I.f conferred E2 responsiveness. Two activator protein 1 (AP-1) elements in this region were essential for induction of promoter activity by E2. ESR1 and JUN (c-Jun) bound to these AP-1 motifs in intact cells and under cell-free conditions. The addition of an ESR1 mutant that interacts with JUN but not directly with DNA enhanced E2-dependent promoter I.f activity. Independently, we demonstrated an interaction between ESR1 and JUN in hypothalamic cells. Knockdown of ESR1 abolished E2-induced aromatase mRNA and enzyme activity. Taken together, E2 regulates Cyp19a1 expression via promoter I.f by enhanced binding of an ESR1/JUN complex to distinct AP-1 motifs in hypothalamic cells. We speculate that this mechanism may, in part, regulate gonadotropin secretion and sexual activity.
We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120,Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms.
Inhibition of vascular endothelial growth factor A (VEGFA) signal transduction arrests vascular and follicle development. Because antiangiogenic VEGFA isoforms are proposed to block proangiogenic VEGFA isoforms from binding to their receptors, we hypothesized that proangiogenic isoforms promote and antiangiogenic isoforms inhibit these processes. The antiangiogenic isoforms Vegfa_165b and Vegfa_189b were amplified and sequenced from rat ovaries. The Vegfa_165b sequence was 90% homologous to human VEGFA_165B. Quantitative RT-PCR determined that Vegfa_165b mRNA was more abundant around Embryonic Day 18, but Vegfa_189b lacked a distinct pattern of abundance. Antiangiogenic VEGFA isoforms were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the effects of VEGFA isoforms in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with VEGFA_164 or an antibody to antiangiogenic isoforms (anti-VEGFAxxxB). Treatment with 50 ng/ml of VEGFA_164 resulted in a 93% increase in vascular density (P < 0.01), and treated ovaries were composed of fewer primordial follicles (stage 0) and more developing follicles (stages 1–4) than controls (P < 0.04). Ovaries treated with 5 ng/ml of VEGFAxxxB antibody had a 93% increase in vascular density (P < 0.02), with fewer primordial and early primary follicles (stage 1) and more primary, transitional, and secondary follicles (stages 2, 3, and 4, respectively) compared with controls (P < 0.005). We conclude that neutralization of antiangiogenic VEGFA isoforms may be a more effective mechanism of enhancing vascular and follicular development in perinatal rat ovaries than treatment with the proangiogenic isoform VEGFA_164.
Fecal and urinary progestin analyses have shown that giraffes express a short reproductive cycle, averaging 15 days, compared with other large ruminants. However, actual ovarian events have not been correlated with the hormonal pattern. In this study, mature cycling female Rothschild giraffes (Giraffa camelopardalis rothschildi) were repeatedly examined by transrectal ultrasonography to correlate ovarian function with changes in fecal progestin (fP4 [nc = 6]) and estradiol (fE2 [nc = 6]) and serum progestin (nc = 2) as measured by enzyme immunoassay. Five females became pregnant and were monitored during early gestation. In this study, we discovered that hormone values for fP4 in cycling giraffes do not correlate with the classic profile of follicular development, ovulation, and luteogenesis. The corpus luteum (CL) and the next dominant follicle were forming simultaneously. A mean ± SD peak in fE2 of 254.92 ± 194.76 ng/g and subsequent ovulation occurred as early as 1 day after the fall in fP4. In pregnant giraffes, the CL reached a diameter significantly larger (mean ± SD, 41.02 ± 2.70 mm; P = 0.0126) than that during the cycle (33.48 ± 2.80 mm), while follicular activity and fluctuating fE2 were still present. With this research, we demonstrated that the progesterone profile typically used to characterize the ovarian cycle does not correlate with luteal development in the ovaries of this species. Furthermore, we conclude that the giraffe could have evolved a short reproductive cycle because of the almost parallel order of ovarian events.
Vitamin A (retinol) is required for male and female reproduction as well as to support many developmental processes. In the male, meiotic entry of germ cells occurs after birth and throughout adulthood, whereas in the female, the entry into meiosis I occurs during embryonic development. Evidence from cultured embryonic ovaries suggests that the vitamin A metabolite, all-trans retinoic acid (atRA), initiates this process. However, in vivo evidence to support a normal role for atRA in meiotic entry is lacking. The present study demonstates that although germ cell number is normal in ovaries from both vitamin A-sufficient (VAS) embryos and those that are deficient in atRA, the majority of germ cells in the most severely atRA-deficient group fail to enter meiosis and remain in an undifferentiated state. In contrast, in a group that is only moderately deficient in atRA, a small number of ovarian germ cells enter meiosis (30%) compared with 75% of cells in the VAS control group. The expression of the atRA-responsive gene, Stra8, is reduced by approximately 90% and 50% in the severely and moderately atRA-deficient ovaries, respectively, compared with the VAS controls. These results provide the first in vivo evidence that vitamin A regulates the entry of germ cells into meiosis in the developing ovary.
In mice, neonatal exposure to a synthetic estrogen, diethylstilbestrol (DES), induces polyovular follicles, which contain two or more oocytes per ovarian follicle. We reported previously that the estrogen receptor beta (ESR2) mediates DES signaling in polyovular follicle induction. However, the specific mechanism of polyovular follicle induction has not yet been clarified. Folliculogenesis in rodents begins soon after birth, accompanied by programmed oocyte death and germ cell loss. In this study, the effects of DES on oocyte death and on mRNA expression of genes thought to be involved in polyovular follicle induction were analyzed during a crucial period of folliculogenesis in the ovary of C57BL/6J, Faslpr/lpr (lacking cell death receptor, FAS), and Esr2 knockout (Esr2 KO) mice. Neonatal DES exposure reduced programmed oocyte death in C57BL/6J mice; however, this reduction was not observed in Esr2 KO mice. In control Faslpr/lpr mice, the oocyte apoptotic index was significantly lower than that in the control C57BL/6J mice. However, the polyovular follicle incidence in control 20-day-old Faslpr/lpr mice was similar to that in the control C57BL/6J mice. Moreover, DES exposure changed mRNA expression of inhibin-alpha (Inha) in 2-day-old C57BL/6J mice. These results suggest that inhibition of oocyte death by DES through ESR2 may be one of the triggers for polyovular follicle induction. The FAS system is also involved in neonatal oocyte death; however, reduction of oocyte death is not sufficient for polyovular follicle induction. The combination of increased Inha mRNA and reduction of oocyte death in the ovaries of mice by DES through ESR2 might be correlated with polyovular follicle induction.
Murine parvoviruses, including minute virus of mice (MVM), represent major infectious disease problems encountered in contemporary laboratory animal research facilities with embryo transfer (ET), one of the most widely used techniques for rederivation. Using an in vivo approach, the objectives of this study were to assess the risk of MVM transmission during rederivation and to provide data that allow recommendation of preventive measures. Therefore, we determined whether immunosuppressive variant MVMi viral DNA is detectable in reproductive organs, gametes (oocytes and spermatozoa), and embryos collected from experimentally infected mice and whether washing as recommended before ET eliminates MVMi sufficiently from gametes and embryos. Fractions of reproductive organs tested positive from Day 5 to Day 30 postinoculation, demonstrating a risk for a minimum period of 4 wk; the highest incidence of positive organs was found between Day 9 and Day 13 postinoculation. Real-time PCR detected viral DNA to a lesser extent in male than in female reproductive organs. MVMi DNA was detected in oocytes and sperm cells derived after in vivo infection but not in two-cell embryos. In vitro contamination studies revealed that the virus firmly adheres to the zona pellucida after 10 wash steps, indicating that even extensive washing might not eliminate MVMi completely from embryos. According to this systematic in vivo approach, recommended measures to prevent transmission of MVM during rederivation include sufficient washing of embryos, accompanying testing using adequate (PCR) methods, and using embryos rather than in vitro fertilization techniques; furthermore, the exchange of gametes should be considered a risk factor.
Bone morphogenetic protein 6 (BMP6) has been suggested as an important local factor capable of modulating the stimulatory actions of follicle-stimulating hormone in granulosa cells in vitro. The objective of this experiment was to determine the effect of direct ovarian infusion of BMP6 (2 μg/h) on ovarian function in ewes with an autotransplanted ovary. Treated ewes (n = 6) and vehicle-treated controls (n = 6) were infused during the early follicular phase, between 12 and 24 h after luteal regression, and ovarian response was determined by collection of samples of ovarian venous blood and transdermal ultrasound. In the absence of any change in circulating gonadotropins or in the antral follicle population, BMP6 infusion resulted in acute but transient increases in ovarian inhibin A, androstenedione, and estradiol secretion (P < 0.05) during the second half of the infusion period. Thereafter, treated animals had an advance in the time of the LH surge by around 10 h (43.3 ± 2.8 h in treated vs. 53.3 ± 2.7 h in controls; P < 0.05) and smaller preovulatory follicles (4.1 ± 0.2 mm in treated vs. 5.3 ± 0.1 mm in controls; P < 0.01), which gave rise to smaller corpora lutea (9.5 ± 0.8 mm in treated vs. 11.7 ± 0.6 mm in controls; P < 0.05). There was, however, no effect of infusion on ovulation rate. Despite the changes in the size of the ovulatory follicles, when the hormonal data were aligned to the time of the luteinizing hormone surge, there were no differences in preovulatory estradiol, androstenedione, or inhibin A between groups. This study therefore provides strong in vivo evidence to support the hypothesis that BMP6 is an important local regulator of ovarian function and that alterations in BMP6 cellular signaling may explain some of the effects of the FecB mutation in inducing precocious maturation of ovulatory follicles.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere