Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Trophoblast stem cells (TSC) are the precursors of the differentiated cells of the placenta. In the mouse, TSC can be derived from outgrowths of either blastocyst polar trophectoderm (TE) or extraembryonic ectoderm (ExE), which originates from polar TE after implantation. The mouse TSC niche appears to be located within the ExE adjacent to the epiblast, on which it depends for essential growth factors, but whether this cellular architecture is the same in other species remains to be determined. Mouse TSC self-renewal can be sustained by culture on mitotically inactivated feeder cells, which provide one or more factors related to the NODAL pathway, and a medium supplemented with FGF4, heparin, and fetal bovine serum. Repression of the gene network that maintains pluripotency and emergence of the transcription factor pathways that specify a trophoblast (TR) fate enables TSC derivation in vitro and placental formation in vivo. Disrupting the pluripotent network of embryonic stem cells (ESC) causes them to default to a TR ground state. Pluripotent cells that have acquired sublethal chromosomal alterations may be sequestered into TR for similar reasons. The transition from ESC to TSC, which appears to be unidirectional, reveals important aspects of initial fate decisions in mice. TSC have yet to be derived from domestic species in which remarkable TR growth precedes embryogenesis. Recent derivation of TSC from blastocysts of the rhesus monkey suggests that isolation of the human equivalents may be possible and will reveal the extent to which mechanisms uncovered by using animal models are true in our own species.
Targets of steroidogenic factor 1 (SF1; also known as NR5A1 and AD4BP) have been identified within cells at every level of the hypothalamic-pituitary-gonadal and -adrenal axes, revealing SF1 to be a master regulator of major endocrine systems. Mouse embryos express SF1 in the genital ridge until Embryonic Day 13.5 (E13.5). Thereafter, expression persists in the male and is substantially lower in the female gonad until birth. We hypothesize that the sexually dimorphic expression of Sf1 during gonadogenesis is mediated by sex-specific regulation of its promoter. To investigate dimorphic regulation within the fetal gonad, we developed an experimental strategy using transient transfection of E13.5 gonad explant cultures and evaluated various Sf1 promoter constructs for sexually dimorphic DNA elements. The proximal Sf1 promoter correctly targeted reporter activity to SF1-expressing cells in both XY and XX gonads. Stepwise deletion of sequences from the Sf1 promoter revealed two regions that affected regulation within female gonads. Mutation of both sequences together did not cause further disruption of reporter activity, suggesting the two sites might work in concert to promote activity in female somatic cells. Results from gel mobility shift assays and fetal gonad-chromatin immunoprecipitation showed that TCFAP2 binds to one of the two female-specific sites within the proximal promoter of Sf1. Together, we show that transient transfection experiments performed within developing testes and ovaries are a powerful tool to uncover elements within the Sf1 promoter that contribute to sex-specific expression.
Here we use an in vivo cross-linking and immunoprecipitation procedure to detect RNA targets of the multifunctional RNA-binding protein polypyrimidine tract-binding protein (PTBP) 2 in mouse testis. Eleven known mRNAs, including Ptbp2 mRNA, 28 RNAs matching intron sequences, and 12 small RNAs and repeat sequences are identified. The specificity of interaction between PTBP2 and its target RNAs was confirmed using RNA interference with mouse N2A cells. Reduction of PTBP2 levels led to decreases in 7 of 10 of the mRNAs, to the repression of alternative splicing of introns, and to reductions in specific miRNAs.
Insulin-like growth factor 2 (IGF2) enhances proliferation and survival of human first-trimester cytotrophoblasts (CTB) by signaling through the insulin-like growth factor 1 receptor (IGF1R). However, the role of the IGF2 receptor (IGF2R) in regulating trophoblast kinetics is unclear: It could act as a clearance receptor for trafficking excess ligand to lysosomes for degradation and/or directly mediate IGF2 signaling. We used an IGF2R knockdown strategy in BeWo cells and placental villous explants to investigate trophoblast proliferation and survival in response to stimulation by IGF. Both IGF1 and IGF2 significantly (P < 0.001) increased mitosis and reduced apoptosis in serum-starved BeWo cells. Small interfering RNA (siRNA)-mediated knockdown of IGF2R further enhanced IGF2-stimulated mitosis (P < 0.01), and IGF2-mediated rescue of apoptosis (P < 0.001) in these cells. Leu27IGF2, an IGF2 analogue that binds to IGF2R but not IGF1R, also protected IGF2R-expressing BeWo cells from apoptosis but did not increase mitosis. IGF treatment of term placental villous explants with reduced syncytial expression of IGF2R increased CTB proliferation (P < 0.001) and decreased apoptosis (P < 0.01) compared to untreated controls. Moreover, IGF2-mediated rescue of CTB apoptosis was significantly greater than that in tissue with normal IGF2R expression. Leu27IGF2 promoted mitogenesis and survival only in explants with intact IGF2R expression. Given that altered CTB turnover is observed in pregnancies complicated by fetal growth restriction, the development of strategies to manipulate the IGF2R signaling axis in the syncytiotrophoblast may provide a therapeutic avenue for treating this condition.
This study examined which neural mechanism (opioid, dopaminergic, or serotonergic system) is involved in the regulation of luteinizing hormone (LH) secretion, with and without nutritional modulation, at different times of the photoperiodic cycle. Goats were randomly distributed into two experimental groups that received either 1.1 (high group; n = 18) or 0.7 (low group; n = 18) times the nutritional maintenance requirements. The goats were exposed to alternations of 3 mo of long days and 3 mo of short days. Plasma LH concentrations were measured twice a week. The effects of intravenous injections of naloxone (endogenous opioid receptor antagonist), pimozide (dopaminergic2 receptor antagonist), and cyproheptadine (serotonin 5-hydroxytryptamine2 receptor antagonist) on LH secretion were assessed during challenges in three different photoperiodic situations: the onset of LH stimulation by short days (OnsetSD), the onset of LH inhibition by long days (OnsetLD), and during the LH inhibition by long days (LateLD). The role of the different neural systems was clearly modified by the level of nutrition. In the low-nutrition group, only naloxone increased LH concentrations during onsetLD (P < 0.05). However, in the high-nutrition group, naloxone increased the concentration and pulsatility of LH (P < 0.05) in onsetSD and onsetLD. Pimozide increased LH concentration and pulsatility (P < 0.05) in onsetLD and LH concentration in lateLD (P < 0.001). Finally, cyproheptadine significantly increased LH concentration at all three times (P < 0.001). These results provide evidence that all three systems are involved in the inhibition of LH release in onsetLD, and that the opioid and serotonin mechanisms are involved during the onsetSD that were enhanced by a high plane of nutrition.
Melissa R. Kroll, Engela S. Viss, Jonathan Lamb, Joy Horstman, Alexander Powell, Andrea Van Wyk, Kaarlo Hinkkala, Traci Hoogland, Matthew Schippers, Stephen Shannon, Carol G. Carlton, Madhulika Sharma, Aaron Taylor, Gregory B. Vanden Heuvel, Tony N. Jelsma
The homeodomain CUX1 protein exists as multiple isoforms that arise from proteolytic processing of a 200-kDa protein or an alternate splicing or from the use of an alternate promoter. The 200-kDa CUX1 protein is highly expressed in the developing kidney, where it functions to regulate cell proliferation. Transgenic mice ectopically expressing the 200-kDa CUX1 protein develop renal hyperplasia associated with reduced expression of the cyclin kinase inhibitor p27. A 55-kDa CUX1 isoform is expressed exclusively in the testes. We determined the pattern and timing of CUX1 protein expression in developing testes. CUX1 expression was continuous in Sertoli cells from prepubertal testes but became cyclic when spermatids appeared. In testes from mature mice, CUX1 was highly expressed only in round spermatids at stages IV–V of spermatogenesis, in both spermatids and Sertoli cells at stages VI–X of spermatogenesis, and only in Sertoli cells at stage XI of spermatogenesis. While most of the seminiferous tubules in wild-type mice were between stages VI and X of spermatogenesis, there was a significant reduction in the percentage of seminiferous tubules between stages VI and X in Cux1 transgenic mice and a significant increase in the percentage of seminiferous tubules in stages IV–V and XI. Moreover, CUX1 was not expressed in proliferating cells in testes from either wild-type or transgenic mice. Thus, unlike the somatic form of CUX1, which has a role in cell proliferation, the testis-specific form of CUX1 is not involved in cell division and appears to play a role in signaling between Sertoli cells and spermatids.
Peroxisome proliferators-activated receptor gamma (PPARG) ligands improve insulin sensitivity in type 2 diabetes and polycystic ovarian syndrome (PCOS). Despite clinical studies showing normalization of pituitary responsiveness to gonadotropin-releasing hormone (GnRH) in patients with PCOS, the precise role of PPARG in regulating the hypothalamic-pituitary-gonadal axis remains unclear. In the present study, we tested the hypothesis that the PPARG agonist rosiglitazone has a direct effect on the pituitary. In mouse LbetaT2 immortalized gonadotrophs, rosiglitazone treatment inhibited GnRH stimulation of the stress kinases p38MAPK and MAPKs/JNKs, but did not alter activation of ERKs, both in the presence and absence of activin. Furthermore, p38MAPK signaling was critical for both Lhb and Fshb promoter activity, and rosiglitazone suppressed the GnRH-mediated induction of Lhb and Fshb mRNA. Depletion of PPARG using a lentivirally encoded short hairpin RNA abolishes the effect of rosiglitazone to suppress activation of JNKs and induction of the transcription factors EGR1 and FOS as well as the gonadotropin genes Lhb and Fshb. Lastly, we show conditional knockout of Pparg in pituitary gonadotrophs caused an increase in luteinizing hormone levels in female mice, a decrease in follicle-stimulating hormone in male mice, and a fertility defect characterized by reduced litter size. Taken together, our data support a direct role for PPARG in modulating pituitary function in vitro and in vivo.
The gonad-specific expression of a recently discovered Igf subtype (Igf3) in teleost has indicated the important role of this novel Igf in the reproductive functions of fish. In the present study using zebrafish as the model organism, we have further examined the gene expression patterns and the physiological role of Igf3 in the ovary. The igf3 gene in zebrafish was found to be alternatively spliced into two transcripts, with transcript variant 1 exclusively expressed in the gonads, and transcript variant 2 only expressed during early development. Using specific antibodies developed for zebrafish Igf3, both the Igf3 prepropeptide and the mature peptide forms of Igf3 were found to be predominantly expressed in the zebrafish ovary. Real-time PCR and in situ hybridization revealed that igf3 mRNA is relatively low in the early follicles, but is significantly increased after the mid-vitellogenic stage (midstage III), and is high in the full-grown follicles. In the full-grown follicles, igf3 mRNA was detected mainly in the somatic follicular cells with a low level of expression in the oocytes. Igf3 immunoreactivity was confined to the follicular cells only. The expression of igf3 was significantly up-regulated in both ovarian fragments and isolated follicles upon treatment with human chorionic gonadotropin in dose- and time-dependent manners. Treatment with 8-bromoadenosine 3′,5′-cyclic monophosphate or 3-isobutyl-1-methylxanthine also up-regulated the expression of igf3 in full-grown follicles. Incubation of follicles with recombinant zebrafish Igf3 significantly enhanced oocyte maturation in time-, dose-, and stage-dependent manners. The actions of Igf3 could be blocked by cycloheximide, but not by actinomycin D. Taken together, these results support an important role of Igf3 in the ovarian functions of zebrafish, especially in oocyte maturation.
In invertebrates and amphibians, informational macromolecules in egg cytoplasm are organized to provide direction to the formation of embryonic lineages, but it is unclear whether vestiges of such prepatterning exist in mammals. Here we examined whether twin blastomeres from 2-cell stage mouse embryos differ in mRNA content. mRNA from 26 blastomeres derived from 13 embryos approximately mid-way through their second cell cycle was subjected to amplification. Twenty amplified samples were hybridized to arrays. Of those samples that hybridized successfully, 12 samples in six pairs were used in the final analysis. Probes displaying normalized values >0.25 (n = 4573) were examined for consistent bias in expression within blastomere pairs. Although transcript content varied between both individual embryos and twin blastomeres, no consistent asymmetries were observed for the majority of genes, with only 178 genes displaying a >1.4-fold difference in expression across all six pairs. Although class discovery clustering showed that blastomere pairs separated into two distinct groups in terms of their differentially expressed genes, when the data were tested for significance of asymmetrical expression, only 39 genes with >1.4-fold change ratios in six of six blastomere pairs passed the two-sample t-test (P < 0.05). Transcripts encoding proteins implicated in RNA processing and cytoskeletal organization were among the most abundant, differentially distributed mRNA, suggesting that a stochastically based lack of synchrony in cell cycle progression between the two cells might explain at least some and possibly all of the asymmetries in transcript composition.
We recently reported that in ELT3 uterine leiomyoma cells, but not in normal myometrial cells, endothelin (ET)-1 exerts a survival effect insensitive to MAPK3/1(ERK1/2) inhibition. In the present work, we investigated the potential role of MAPK14 (p38) in this ET-1-mediated effect. We demonstrated that, in ELT3, but not in normal myometrial cells, ET-1 activated MAPK14. Data based on pharmacological and siRNA approaches indicate that ETA and ETB receptors contributed to the activation of MAPK14 by ET-1 through a mechanism involving Gi protein, but not PI3-kinase. The inhibition of MAPK3/1 by U0126 did not affect the activation of MAPK14 by ET-1. Conversely, the inhibition of MAPK14 by SB203580 and the down-regulation of MAP2K3/MAP2K6 (kinases upstream of MAPK14) by specific siRNA did not alter the activation of MAPK3/1. These data indicate that MAPK14 was activated by ET-1 independently from MAPK3/1. Furthermore, ET-1 increased protein expression of prostaglandin synthase 2 (PTGS2 or COX2), prostaglandin E2 (PGE2) production, and subsequent ELT3 cell survival. The inhibition of PTGS2 induction and subsequent survival induced by ET-1 required the coinhibition of MAPK14 and MAPK3/1. Our findings provide evidence that ET-1 activated MAPK14 only in ELT3 cells, but not in normal myometrial cells. This MAPK14 activation was required, in addition to MAPK3/1 in ET-1-mediated survival through the COX2/prostaglandin axis, and may explain the absence of ET-1 antiapoptotic effect in normal myometrial cells. Our data reinforce the role of ET-1 and associated signaling pathways in leiomyoma pathology.
During placentation, the concentration of fibrinous deposits on the surfaces of maternal vasculature plays a role in villous development and has been strongly implicated in the pathophysiology of human fetal growth restriction (FGR). Fibrinous deposits are conspicuous sites of platelet aggregation where there is local activation of the hemostatic cascade. During activation of the hemostatic cascade, a number of pro- and antiangiogenic agents may be generated at the cell surface, and an imbalance in these factors may contribute to the placental pathology characteristic of FGR. We tested the hypothesis that angiostatin4.5 (AS4.5), a cleavage fragment of plasminogen liberated at the cell surface, is capable of causing FGR in mice. Increased maternal levels of AS4.5 in vivo result in reproducible placental pathology, including an altered vascular compartment (both in decidual and labyrinthine layers) and increased apoptosis throughout the placenta. In addition, there is significant skeletal growth delay and conspicuous edema in fetuses from mothers that received AS4.5. Maternally generated AS4.5, therefore, can access maternal placental vasculature and have a severe effect on placental architecture and inhibit fetal development in vivo. These findings strongly support the hypothesis that maternal AS4.5 levels can influence placental development, possibly by directly influencing trophoblast turnover in the placenta, and contribute to fetal growth delay in mice.
SERPINE2, one of the potent serine protease inhibitors that modulates the activity of plasminogen activator and thrombin, is implicated in many biological processes. In the present study, we purified SERPINE2 from mouse seminal vesicle secretion (SVS), using liquid chromatography and identified it by liquid chromatography/tandem mass spectrometry, and it showed potent inhibitory activity against the urokinase-type plasminogen activator. SERPINE2 was expressed predominantly in seminal vesicles among murine male reproductive tissues. It was immunolocalized to the SVS and mucosal epithelium of the seminal vesicle, epididymis, coagulating gland, and vas deferens. In the testes, SERPINE2 was immunostained in spermatogonia, spermatocytes, spermatids, Leydig cells, and spermatozoa. SERPINE2 was also detected on the acrosomal cap of testicular and epididymal sperm and was suggested to be an intrinsic sperm surface protein. The purified SERPINE2 protein could bind to epididymal sperm. A prominent amount of SERPINE2 was detected on ejaculated and oviductal spermatozoa. Nevertheless, SERPINE2 was detected predominantly on uncapacitated sperm, indicating that SERPINE2 is lost before initiation of the capacitation process. Moreover, SERPINE2 could inhibit in vitro bovine serum albumin-induced sperm capacitation and prevent sperm binding to the egg, thus blocking fertilization. It acts through preventing cholesterol efflux, one of the initiation events of capacitation, from the sperm. These findings suggest that the SERPINE2 protein may play a role as a sperm decapacitation factor.
Zinc is essential for many biological processes, including proper functioning of gametes. We recently reported that zinc levels rise by over 50% during oocyte maturation and that attenuation of zinc availability during this period could be achieved using the membrane-permeable heavy metal chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). This zinc insufficiency resulted in formation of large polar bodies, failure to establish metaphase II arrest, and impaired establishment of cortical polarity. As these phenotypes resemble those of MOS null oocytes, we examined the impact of zinc insufficiency on the MOS-MAPK pathway. Reduced levels of both MOS protein and phosphorylation of MAP2K1/2 are observed in zinc-insufficient oocytes; however, these differences appear only after completion of the first meiotic division. In addition, activation of the downstream effector of the MOS pathway, MAPK3/1, is not affected by zinc insufficiency, and reduced MOS levels are observed only with the presence of TPEN after the first polar body extrusion. These data are inconsistent with the hypothesis that reduced MOS mediates the observed phenotype. Finally, MOS overexpression does not rescue the phenotype of zinc-insufficient oocytes, confirming that the observed disruption of asymmetric division and spindle abnormalities cannot be attributed to impaired MOS signaling. Zinc-insufficient oocytes do not increase maturation promoting factor (MPF) activity following the first meiotic division, and increasing MPF activity through expression of nondegradable cyclin B1 partially rescues the ability of zinc-insufficient oocytes to enter metaphase II. Although we have shown that zinc has a novel role in the meiotic cell cycle, it is not mediated through the MOS-MAPK pathway.
Vicki Plaks, Elina Berkovitz, Katrien Vandoorne, Tamara Berkutzki, Golda M. Damari, Rebecca Haffner, Nava Dekel, Brian A. Hemmings, Michal Neeman, Alon Harmelin
The importance of placental circulation is exemplified by the correlation of placental size and blood flow with fetal weight and survival during normal and compromised human pregnancies in such conditions as preeclampsia and intrauterine growth restriction (IUGR). Using noninvasive magnetic resonance imaging, we evaluated the role of PKBalpha/AKT1, a major mediator of angiogenesis, on placental vascular function. PKBalpha/AKT1 deficiency reduced maternal blood volume fraction without affecting the integrity of the fetomaternal blood barrier. In addition to angiogenesis, PKBalpha/AKT1 regulates additional processes related to survival and growth. In accordance with reports in adult mice, we demonstrated a role for PKBalpha/AKT1 in regulating chondrocyte organization in fetal long bones. Using tetraploid complementation experiments with PKBalpha/AKT1-expressing placentas, we found that although placental PKBalpha/AKT1 restored fetal survival, fetal PKBalpha/AKT1 regulated fetal size, because tetraploid complementation did not prevent intrauterine growth retardation. Histological examination of rescued fetuses showed reduced liver blood vessel and renal glomeruli capillary density in PKBalpha/Akt1 null fetuses, both of which were restored by tetraploid complementation. However, bone development was still impaired in tetraploid-rescued PKBalpha/Akt1 null fetuses. Although PKBalpha/AKT1-expressing placentas restored chondrocyte cell number in the hypertrophic layer of humeri, fetal PKBalpha/AKT1 was found to be necessary for chondrocyte columnar organization. Remarkably, a dose-dependent phenotype was exhibited for PKBalpha/AKT1 when examining PKBalpha/Akt1 heterozygous fetuses as well as those complemented by tetraploid placentas. The differential role of PKBalpha/AKT1 on mouse fetal survival and growth may shed light on its roles in human IUGR.
The oxytocin/oxytocin receptor (OXT/OXTR) system plays an important role in the regulation of parturition. The amnion is a major source of prostaglandins and inflammatory cytokine synthesis, which increase both before and during labor. Amnion is a noncontractile tissue; therefore, the role played by OXT/OXTR in this tissue will be fundamentally different from the role played in myometrial contractions. In the present study, we demonstrate increased OXTR mRNA and protein concentrations in human amnion epithelial cells associated with the onset of labor. We show that incubation of primary human amnion epithelial cells with IL1B results in a rapid, transient up-regulation of OXTR mRNA expression, which peaks in prelabor samples after 6 h. Incubation of prelabor amnion epithelial cells with OXT results in a marked increase of prostaglandin E2 synthesis, and we demonstrate that OXT activates the extracellular signal-regulated protein kinase signal transduction pathway to stimulate up-regulation of cyclo-oxygenase 2 in human amnion epithelial cells. The increased ability of human amnion to produce prostaglandins in response to OXT treatment suggests a complementary role for the OXT/OXTR system in the activation of human amnion and the onset of labor.
Implantation of an embryo in the endometrium is a critical step for continuation of pregnancy, and implantation failure is a major cause of infertility. In rats, the implantation process involves invasion of the endometrial epithelial lining by the trophoblastic cells in order to reach the underlying stromal cells. Transforming growth factor beta (TGFB) is a multifunctional cytokine that regulates proliferation, differentiation, and invasiveness of multiple cell lineages. We used rat HRP-1 and RCHO-1 placental cell lines to perform this study. HRP-1 cells were derived from midgestation chorioallantoic placental explants of the outbred Holtzman rat, whereas RCHO-1 cells were established from a rat choriocarcinoma. MTT proliferation assays revealed that each TGFB isoform decreased HRP-1 cell growth in a dose-dependent manner, whereas RCHO-1 cells were resistant to the growth-suppressive effect of TGFB1 and TGFB3. Only TGFB2 reduced RCHO-1 cell proliferation. Activation of ERK, MAPK14 (p38 MAPK), or SMAD pathways is known to play a role in cell proliferation, and we found that TGFB activates these pathways in both HRP-1 and RCHO-1 cells in an isoform-specific manner. MTT proliferation assays revealed that ERK pathway is partially implicated in TGFB3-reduced HRP-1 cell proliferation. Hoechst nuclear staining and caspase-3 cleavage demonstrated that TGFB isoforms failed to induce apoptosis in both cell lines. Matrigel invasion assays showed that both HRP-1 and RCHO-1 cells exhibit intrinsic invasive ability under untreated conditions. The capacity of HRP-1 cells to invade the Matrigel was selectively increased by TGFB2 and TGFB3, whereas all TGFB isoforms could increase the invasiveness of RCHO-1 cells. These important functional studies progressively reveal a key role for TGFB in regulating proliferation and invasiveness of placental cells.
Anti-Müllerian hormone (AMH) is an endocrine marker that can help predict superovulatory responses to treatments administered to cows for embryo production. However, the optimal time of the estrous cycle at which a blood test should be performed for a highly reliable prognosis has not yet been established. Moreover, little is known about the regulation of AMH production. To answer these questions, a study was designed to investigate the regulation of AMH production in cows selected for their high or low ovulatory responses to superovulation. At the granulosa cell level, AMH production was inhibited by follicle-stimulating hormone but enhanced by bone morphogenetic proteins. At the follicular level, the expression of AMH within the follicle was dependent on the stage of follicular development. At the ovarian level, the size of the pool of small antral growing follicles determined ovarian AMH production. At the endocrine level, AMH followed a specific dynamic profile during the estrous cycle, which occurred independently of the follicular waves of terminal follicular development. Cows selected for their high or low responses to superovulation did not differ in the regulation of AMH production, but cows with higher responses had higher plasma AMH concentrations throughout the cycle. The optimal period of the estrous cycle at which to measure AMH concentrations with the aim of selecting the best cows for embryo production was found to be at estrus and after Day 12 of the cycle. Based on this multiscale study, we propose a model that integrates the different regulatory levels of AMH production.
The preimplantation embryo is sensitive to its environment and, despite having some plasticity to adapt, environmental perturbations can impair embryo development, metabolic homeostasis, fetal and placental development, and offspring health. This study used an in vitro model of embryo culture with increasing mitochondrial inhibition to directly establish the effect of impaired mitochondrial function on embryonic, fetal, and placental development. Culture in the absence of the carbohydrate pyruvate significantly increased blastocyst glucose oxidation via glycolysis to maintain normal levels of ATP and tricarboxylic acid (TCA) cycle activity. This culture resulted in a significant reduction in blastocyst development, trophectoderm cell number, and respiration rate but, importantly, did not impair implantation rates or fetal and placental development. In contrast, increasing concentrations of the mitochondrial inhibitor amino-oxyacetate (AOA) impaired glycolysis, TCA cycle activity, respiration rate, and ATP production; incrementally reduced blastocyst development; and decreased blastocyst inner cell mass and trophectoderm cell numbers. Importantly, AOA did not affect implantation rates; however, 5 μM AOA significantly reduced placental growth but not fetal growth, increasing the fetal:placental weight ratio. Furthermore, 50 μM AOA significantly reduced both placental and fetal growth but not the fetal:placental weight ratio. Hence, this study demonstrates that a threshold of mitochondrial function is required for normal development, and despite developmental plasticity of the embryo, impaired mitochondrial function in the embryo affects subsequent fetal and placental growth. These results highlight the importance of mitochondrial function in regulating pre- and postimplantation development; however, the effect on offspring health remains unknown.
Alexander Zlotnik, Benjamin F. Gruenbaum, Boaz Mohar, Ruslan Kuts, Shaun E. Gruenbaum, Sharon Ohayon, Matthew Boyko, Yael Klin, Eyal Sheiner, Gad Shaked, Yoram Shapira, Vivian I. Teichberg
The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.
Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix in the prepartum cervix. These findings support the contention that immigration of immune cells and enhanced innervation are involved in processes that remodel the cervix and time parturition.
Kallmann syndrome is characterized by hypogonadotrophic hypogonadism and anosmia. The syndrome can be caused by mutations in several genes, but the X-linked form is caused by mutation in the Kallmann syndrome 1 (KAL1). KAL1 plays a critical role in gonadotropin-releasing hormone (GnRH) neuronal migration that is essential for the normal development of the hypothalamic-pituitary-gonadal axis. Interestingly, KAL1 appears to be missing from the rodent X, and no orthologue has been detected as yet. We investigated KAL1 during development and in adults of an Australian marsupial, the tammar wallaby, Macropus eugenii. Marsupial KAL1 maps to an autosome within a group of genes that was added as a block to the X chromosome in eutherian evolution. KAL1 expression was widespread in embryonic and adult tissues. In the adult testis, tammar KAL1 mRNA and protein were detected in the germ cells at specific stages of differentiation. In the adult testis, the protein encoded by KAL1, anosmin-1, was restricted to the round spermatids and elongated spermatids. In the adult ovary, anosmin-1 was not only detected in the oocytes but was also localized in the granulosa cells throughout folliculogenesis. This is the first examination of KAL1 mRNA and protein localization in adult mammalian gonads. The protein localization suggests that KAL1 participates in gametogenesis not only through the development of the hypothalamic-pituitary-gonadal axis by activation of GnRH neuronal migration, but also directly within the gonads themselves. Because KAL1 is autosomal in marsupials but is X-linked in eutherians, its conserved involvement in gametogenesis supports the hypothesis that reproduction-related genes were actively recruited to the eutherian X chromosome.
Coordinated migration and progesterone production by granulosa cells is critical to the development of the corpus luteum, but the underlying mechanisms remain obscure. Sphingosine 1-phosphate (S1P), which is associated with follicular fluid high-density lipoprotein (FF-HDL), was previously shown to regulate ovarian angiogenesis. We herein examined the effects of S1P and FF-HDL on the function of granulosa lutein cells. Both FF-HDL and S1P induced migration of primary human granulosa lutein cells (hGCs) and the granulosa lutein cell line HGL5. In addition, FF-HDL but not S1P promoted progesterone synthesis, and neither of the two compounds stimulated proliferation of granulosa lutein cells. Polymerase chain reaction and Western blot experiments demonstrated the expression of S1P receptor type 1 (S1PR1), S1PR2, S1PR3, and S1PR5 but not S1PR4 in hGCs and HGL5 cells. The FF-HDL- and S1P-induced granulosa lutein cell migration was emulated by FTY720, an agonist of S1PR1, S1PR3, S1PR4, and S1PR5, and by VPC24191, an agonist of S1PR1 and S1PR3, but not by SEW2871 and phytosphingosine 1-phosphate, agonists of S1PR1 and S1PR4, respectively. In addition, blockade of S1PR3 with CAY1044, suramine, or pertussis toxin inhibited hGC and HGL5 cell migration toward FF-HDL or S1P, while blockade of S1PR1 and S1PR2 with W146 and JTE013, respectively, had no effect. Both FF-HDL and S1P triggered activation of small G-protein RAC1 and actin polymerization in granulosa cells, and RAC1 inhibition with Clostridium difficile toxin B or NSC23766 abolished FF-HDL- and S1P-induced migration. The FF-HDL-associated S1P promotes granulosa lutein cell migration via S1PR3 and RAC1 activation. This may represent a novel mechanism contributing to the development of the corpus luteum.
In sexual species, fertilization of oocytes produces individuals with alleles derived from both parents. Here we use pluripotent stem cells derived from somatic cells to combine the haploid genomes from two males to produce viable sons and daughters. Male (XY) mouse induced pluripotent stem cells (Father #1) were used to isolate subclones that had spontaneously lost the Y chromosome to become genetically female (XO). These male-derived XO stem cells were used to generate female chimeras that were bred with genetically distinct males (Father #2), yielding progeny possessing genetic information that was equally derived from both fathers. Thus, functional oocytes can be generated from male somatic cells after reprogramming and spontaneous sex reversal. These findings have novel implications for mammalian reproduction and assisted reproductive technology.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere