Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Gonadotropins belong to the family of dimeric glycoprotein hormones and regulate gonadal physiology mediated by G protein-coupled, seven-transmembrane receptors. These glycoprotein hormones are widely used in the clinic to promote ovarian follicle development and for treating some cases of male infertility. We traced the coevolution of dimeric gonadotropin hormones and their receptors, together with thyrotropin and its receptor. We updated recent findings on human genetic variants of these genes and their association with dizygotic twining, polycystic ovarian syndrome, primary ovarian insufficiency, male-limited precocious puberty, and infertility. In addition to the known physiological roles of gonadotropin-receptor signaling in gonadal tissues, we also discussed emerging understanding of extragonadal functions of gonadotropins in bones and adipose tissues, together with recent advances in in vivo imaging of gonadotropin receptors in live animals. Recent development of gonadotropin receptor agonists and antagonists were summarized with an emphasis on the development of functional antagonists for FSH receptors to alleviate osteoporosis and obesity associated with menopause.
Summary Sentence
Understanding of the co-evolution of gonadotropins and their cognate receptors, together with mutant phenotypes and receptor imaging, allow future design of functional antagonists to regulate different physiological and pathological processes.
How rapid induction of steroid hormone biosynthesis occurs in response to trophic hormone stimulation of steroidogenic cells has been a subject of intensive investigation for approximately six decades. A key observation made very early was that acute regulation of steroid biosynthesis required swift and timely synthesis of a new protein whose role appeared to be involved in the delivery of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where the process of steroidogenesis begins. It was quickly learned that this transfer of cholesterol to the inner mitochondrial membrane was the regulated and ratelimiting step in steroidogenesis. Following this observation, the quest for this putative regulator protein(s) began in earnest in the late 1950s. This review provides a history of this quest, the candidate proteins that arose over the years and facts surrounding their rise or decline. Only two have persisted—translocator protein (TSPO) and the steroidogenic acute regulatory protein (StAR). We present a detailed summary of the work that has been published for each of these two proteins, the specific data that has appeared in support of their role in cholesterol transport and steroidogenesis, and the ensuing observations that have arisen in recent years that have refuted the role of TSPO in this process. We believe that the only viable candidate that has been shown to be indispensable is the StAR protein. Lastly, we provide our view on what may be the most important questions concerning the acute regulation of steroidogenesis that need to be asked in future.
Summary Sentence
The acute regulation of steroidogenesis in the adrenal and gonads is controlled by cholesterol transfer into the mitochondria and this review covers two decades of research that has demonstrated StAR is indispensable for this process.
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mousemodels where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Summary Sentence
Estrogenic activity, which was first thought to be harmful to males, has now been shown to be produced locally in significant quantities and to be essential for male reproductive tract development and fertility.
Premature progesterone (P) elevation was commonly seen in IVF prior to the utilization of GnRH analogues for suppression of endogenous gonadotropin release. The cause and effect of premature P elevation has finally been better elucidated in the past decade. Although still occurring in 5–38% of all IVF cycles, the adverse effects of premature P elevation on pregnancy outcomes are now well known.
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimentalmethods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
This review focuses on those mouse mutations that cause an effect on the morphology, viability, and/or behavior of primordial germ cells (PGCs) and gonocytes at specific steps of their fetal development up to the start of spermatogenesis, a few days after birth. To restrict the area covered, mice with mutations that cause abnormal hormone levels or mutations of genes not expressed in germ cells that secondarily cause spermatogenic problems are not discussed. To make our literature search as comprehensive as possible, Pubmed was searched for “(primordial germ cells OR prospermatogonia OR prespermatogonia OR gonocytes OR spermatogonia ormeiosis or spermiogenesis or spermatogenesis) AND mouse AND (knockout or mutant or transgenic).” This search started at 2003 as mutants created earlier were already retrieved for a previous review. The resulting citations were then further selected for complete or partial arrests at the level of PGCs and/or gonocytes. Fifty-nine protein coding genes and two miRNA coding genes were found that arrest the development of PGCs and gonocytes at specific steps providing a better insight into the regulation of the development of these cells. As to be expected, often problems in fetal germ cell development have an effect on the fertility of the mice at adulthood.
Summary Sentence
Many gene mutations cause an arrest at specific developmental steps of mouse primordial germ cells and gonocytes, also called prospermatogonia, providing valuable clues for the regulation of their development.
The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating tomale fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.
Herein we summarize important discoveries made over many years about Leydig cell function and regulation. Fetal Leydig cells produce the high levels of androgen (testosterone or androstenedione, depending upon the species) required for differentiation of male genitalia and brain masculinization. Androgen production declines with loss of these cells, reaching a nadir at postpartum. Testosterone then gradually increases to high levels with adult Leydig cell development from stem cells. In the adult, luteinizing hormone (LH) binding to Leydig cell LH receptors stimulates cAMP production, increasing the rate of cholesterol translocation into the mitochondria. Cholesterol is metabolized to pregnenolone by the CYP11A1 enzyme at the inner mitochondrial membrane, and pregnenolone to testosterone by mitochondria and smooth endoplasmic reticulum enzymes. Cholesterol translocation to the inner mitochondrial membrane is mediated by a protein complex formed at mitochondrial contact sites that consists of the cholesterol binding translocator protein, voltage dependent anion channel, and other mitochondrial and cytosolic proteins. Steroidogenic acute regulatory protein acts at this complex to enhance cholesterol movement across the membranes and thus increase testosterone formation. The 14-3-3γ and ϵ adaptor proteins serve as negative regulators of steroidogenesis, controlling the maximal amount of steroid formed. Decline in testosterone production occurs in many aging and young men, resulting inmetabolic and quality-of-life changes. Testosterone replacement therapy is widely used to elevate serum testosterone levels in hypogonadal men. With knowledge gained of the mechanisms involved in testosterone formation, it is also conceivable to use pharmacological means to increase serum testosterone by Leydig cell stimulation.
Summary Sentence
A summary of important discoveriesmade over the course of many years about Leydig cell function and regulation, and discussion of important issues that remain to be understood.
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Summary Sentence
The chromosomal dynamics that underlie meiosis, the defining event of gametogenesis, are reviewed, with a look forward to advances that are on the horizon.
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm–egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm–egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm–egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Summary Sentence
Researches on fertilization in the last 50 years were reviewed to see the future.
Having been debated for many years, the presence and role of spermatozoal RNAs is resolving, and their contribution to development is now appreciated. Data from different species continue show that sperm contain a complex suite of coding and noncoding RNAs that play a role in an individual's life course. Mature sperm RNAs provide a retrospective of spermatogenesis, with their presence and abundance reflecting sperm maturation, fertility potential, and the paternal contribution to the developmental path the offspring may follow.
Sperm RNAs delivered upon fertilization provide some of the initial contacts with the oocyte, directly confront the maternal with the paternal contribution as a prelude to genome consolidation. Following syngamy, early embryo development may in part be modulated by paternal RNAs that can include epidydimal passengers. This provides a direct path to relay an experience and then initiate a paternal response to the environment to the oocyte and beyond. Their epigenetic impact is likely felt prior to embryonic genome activation when the population of sperm delivered transcripts markedly changes. Here, we review the insights gained from sperm RNAs over the years, the subtypes, and the caveats of the RNAs described.We discuss the role of sperm RNAs in fertilization and embryo development, and their possible mechanism(s) influencing offspring phenotype. Approaches to meet the future challenges as the study of sperm RNAs continues, include, elucidating the potential mechanisms underlying how paternal allostatic load, the constant adaptation of health to external conditions, may be relayed by sperm RNAs to affect future generations.
Summary Sentence
A historical perspective of the discovery and delivery of sperm RNAs that initiate development is presented. How these RNAs provide a record of, and components essential to fertility, embryo development, and offspring's phenotype are discussed.
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Summary Sentence
We review, often with a historical perspective, transcriptional and post-transcriptional changes that underlie the oocyte-to-embryo transition in mouse.
Research development on blastocyst implantation was reviewed in three sections: primate implantation, ungulate farm animal implantation, and the general process of blastocyst implantation in small rodents. Future research directions of this area are suggested.
Summary Sentence
Research on blastocyst implantation was historically reviewed.
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Summary Sentence
The review presents basic concepts of hemochorial placentation, discusses significant contributions to the field, and highlights experimental approaches for future investigation.
Trophoblast (TB) comprises the outer cell layers of the mammalian placenta that make direct contact with the maternal uterus and, in species with a highly invasive placenta, maternal blood. It has its origin as trophectoderm, a single epithelial layer of extra-embryonic ectoderm that surrounds the embryo proper at the blastocyst stage of development. Here, we briefly compare the features of TB specification and determination in the mouse and the human. We then review research on a model system that has been increasingly employed to study TB emergence, namely the BMP4 (bone morphogenetic protein-4)-directed differentiation of human embryonic stem cells (ESCd), and discuss why outcomes using it have proved so uneven. We also examine the controversial aspects of this model, particularly the issue of whether or not the ESCd represents TB at all. Our focus here has been to explore similarities and potential differences between the phenotypes of ESCd, trophectoderm, placental villous TB, and human TB stem cells. We then explore the role of BMP4 in the differentiation of human pluripotent cells to TB and suggest that it converts the ESC into a totipotent state that is primed for TB differentiation when self-renewal is blocked. Finally we speculate that the TB formed from ESC is homologous to the trophectoderm-derived, invasive TB that envelopes the implanting conceptus during the second week of pregnancy.
Summary Sentence
BMP4-driven differentiation of human embryonic and induced pluripotent stem cells provides a useful model for studying the specification and early development of early placental trophoblast.
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells.
The first incidence of embryonic diapause in mammals was observed in the roe deer, Capreolus capreolus, in 1854 and confirmed in the early 1900s. Since then scientists have been fascinated by this phenomenon that allows a growing embryo to become arrested for up to 11 months and then reactivate and continue development with no ill effects. The study of diapause has required unraveling basic reproductive processes we now take for granted and has spanned some of the major checkpoints of reproductive biology from the identification of the sex hormones to the hypothalamic–pituitary axis to microRNA and exosomes. This review will describe the history of diapause from its origins to the current day, including its discovery and efforts to elucidate its mechanisms. It will also attempt to highlight the people involved who were instrumental in progressing this field over the last 160 years. The most recent confirmation of mammalian diapause was in the panda in 2009 and there are still multiple mammals where it has been predicted but not yet confirmed. Furthermore, there are many questions still unanswered which ensure that embryonic diapause will continue to be a topic of research for many years to come. Note that there have recently been several extensive reviews covering the recent advances in embryonic diapause, so they will be mentioned only briefly here. For further information refer to Renfree and Shaw 2014; Fenelon et al 2014; Renfree and Fenelon 2017, and references therein.
Summary Sentence
The history of the discovery of embryonic diapause inmammals, the key breakthroughs, the current understanding, and future directions for the field.
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNAmethylation patterns dramatically change duringmammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Summary Sentence
This review summarizes the changes in DNA methylation at imprinting control regions, which regulate monoallelic imprinted gene expression, from fertilization, embryogenesis, and PGC development, which are essential for proper development.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere