Youming Hou, Zhangquan Weng
Environmental Entomology 39 (5), 1676-1684, (1 October 2010) https://doi.org/10.1603/EN10015
KEYWORDS: Octodonta nipae, development, POPULATION GROWTH, fecundity, Life table parameters
The effect of temperature on the development, survivorship, fecundity, and life table parameters of Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), was studied at seven constant temperatures of 17.5, 20, 22.5, 25, 27.5, 30, and 32.5°C. Preliminary experiments showed that no development was observed at 15 and 35°C. All individuals completed development and females laid eggs from 20 to 30°C. There was a significant decrease in male and female longevity with increasing temperatures from 20 to 30°C. The longest and shortest longevity were 203.5 and 73.7 d for males, and 178.7 and 57.6 d for females, respectively. Females produced on average 62.7, 88.9, 116.8, 70.0, and 47.3 eggs and the life expectancy for a newborn egg was 171.6, 148.7, 114.9, 89.2, and 94.8 d at 20, 22.5, 25, 27.5 and 30°C, respectively. Life history data were analyzed by using an age-stage, two-sex life table. The intrinsic rate of increase (r) and the finite rate of increase (λ) of O. nipae increased with increasing temperatures from 20 to 30°C, while the mean generation time (T) decreased within this temperature range. The r was 0.0155, 0.0249, 0.0339, 0.0361, and 0.0383 d-1 at 20, 22.5, 25, 27.5, and 30°C, respectively. The net reproductive rate (R0) was highest at 25°C (35.0 offspring), and lowest at 20°C (17.0 offspring). T was shortest at 30°C (76.4 d). The results showed that temperature greatly affected the fecundity and life table parameters of O. nipae, and a suitable temperature for population development and fecundity was at 25°C. The life table data can be used for the projection of population growth and evaluation of control programs.