Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) are fruit fly species (Diptera: Tephritidae) of economic importance in South Africa. These pests cause direct damage to a number of commercially produced fruit and are of phytosanitary concern. A study was conducted to determine the distribution, relative abundance, and seasonal occurrence of the three species in different climatic regions of South Africa. The relative abundance and seasonal phenology of C. capitata and C. rosa were also compared between production areas and home gardens in Stellenbosch, Western Cape. Yellow bucket traps baited with Biolure were used to trap the flies over a 2-yr period in the different sampling areas. Different fruit types were sampled in Stellenbosch to determine fruit fly infestation. C. capitata was found to have a widespread distribution in South Africa, whereas C. rosa were absent from or only present in low numbers in the drier regions. C. cosyra was restricted to the North East and East coast, following a similar pattern to the distribution of marula, Sclerocarrya hirrea, an important wild host. Fruit in home gardens provided a breeding ground for C. capitata and C. rosa and a source for infestation of orchards when fruit started to mature, highlighting the need for an area-wide strategy for the control of fruit flies.
Recent introduction of modern drainage systems has produced intensely dry conditions in rice farmlands and has degraded habitats for aquatic animals. In this study, we compared water beetle (Coleoptera) and water bug (Heteroptera) communities within rice fields cultivated under different management regimes: V-furrow no-till direct-seeding (DS) and conventional regimes. In DS fields, rice is sown in well-drained fields, and flooding is performed a month later than in conventional rice fields. DS fields are then continuously flooded until harvesting; unlike in conventional fields, where midseason drainage is performed in summer. We observed that DS fields supported higher densities of water beetles and water bugs than conventional fields, probably because of the high compatibility between the flooding period and the reproductive season of the insects. The species richness of water beetles was higher in DS fields than in conventional fields. Overall, DS fields showed higher water beetle and water bug abundance, but the effect was variable for individual species: seven species were more abundant in DS than in conventional fields, whereas two species showed opposite tendencies. Considering the differential responses among species to the management regimes, a mosaic of DS and conventional fields is preferable to either field alone for the conservation of aquatic insects in rice agroecosystems.
Early successional ruderal plants in North America include numerous native and nonnative species, and both are abundant in disturbed areas. The increasing presence of nonnative plants may negatively impact a critical component of food web function if these species support fewer or a less diverse arthropod fauna than the native plant species that they displace. We compared arthropod communities on six species of common early successional native plants and six species of nonnative plants, planted in replicated native and nonnative plots in a farm field. Samples were taken twice each year for 2 yr. In most arthropod samples, total biomass and abundance were substantially higher on the native plants than on the nonnative plants. Native plants produced as much as five times more total arthropod biomass and up to seven times more species per 100 g of dry leaf biomass than nonnative plants. Both herbivores and natural enemies (predators and parasitoids) predominated on native plants when analyzed separately. In addition, species richness was about three times greater on native than on nonnative plants, with 83 species of insects collected exclusively from native plants, and only eight species present only on nonnatives. These results support a growing body of evidence suggesting that nonnative plants support fewer arthropods than native plants, and therefore contribute to reduced food resources for higher trophic levels.
The phylogenetically ancient firebrats, Thermobia domestica (Packard) (Thysanura: Lepismatidae), lack any form of long-distance communication, yet are able to locate mates in sustained hot and humid microhabitats, typically within human habitations where they feed on dried goods, including cellulosic substrates. We have recently shown that firebrats aggregate in response to two symbiotic microorganisms in their feces, the bacterium Enterobacter cloacae and the fungus Mycotypha microspora. Our objectives were to determine how firebrats detect M. microspora and E. cloacae, and whether these microbial symbionts nutritionally benefit firebrats. Applied to a glass surface in bioassays, E. cloacae as well as the isolated exopolysaccharide of E. cloacae induced arrestment of firebrats, whereas M. microspora induced arrestment only in the presence of cellulosic substrate. When M. microspora and E. cloacae were grown aerobically on cellulose agar, only M. microspora yielded zones of clearing indicative of enzymatic cellulose degradation. Firebrats also arrested in response to D-glucose, which is a constituent of the exopolysaccharide and which is produced by the cellulase of M. microspora during cellulose degradation. First- to third-instar nymphs of firebrats that were fed E. cloacae, M. microspora, or a nutrient-rich diet developed equally well. By consuming E. cloacae and M. microspora, and by spreading them through feces, firebrats appear able to occupy nutrient-poor habitats that otherwise would not support development of their offspring.
Accurate detection and quantification of Candidatus Liberibacter solanacearum (CLs), the putative causal agent of zebra chip disease of potato (Solanum tuberosum L.), in the potato psyllid, Bactericera cockerelli (Sulc), has become necessary to better understand the biology of the disease cycle. Studies on the transmission efficiency of potato psyllids have shown inconsistencies with field surveys. There have also been reports of laboratory colonies inexplicably losing and regaining CLs infection as detected by polymerase chain reaction (PCR). Until now, DNA primers were used to detect CLs in potato psyllid tissue using conventional polymerase chain reaction (PCR) and gel electrophoresis or by real-time quantitative PCR. In this study, CLs was detected using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) at levels identifiable by PCR, and low levels, including samples with only one cell of CLs. Potato psyllids with <300 pyrosequencing reads did not show positive using conventional PCR. These results indicate that the currently accepted PCR diagnostic technique produces false negatives due to detection limits higher than what is generally present in field collected psyllids, and also provides an explanation as to why laboratory colonies seem to lose and regain CLs infection.
Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.
Julien Bauwens, Catherine Millet, Cedric Tarayre, Catherine Brasseur, Jacqueline Destain, Micheline Vandenbol, Philippe Thonart, Daniel Portetelle, Edwin De Pauw, Eric Haubruge, Frederic Francis
The complex microbial community living in the hindgut of lower termites includes prokaryotes, flagellates, yeasts, and filamentous fungi. Many microorganisms are found in the termite gut, but only a few are thought to be involved in symbiotic association to participate in cellulose digestion. Proteomics provides analyses from both taxonomical and functional perspectives. We aimed to identify symbiont diversity in the gut of Reticulitermes santonensis (Feytaud), via complementary electrospray ionization associated to ion trap tandem mass spectrometry (LC-MS/MS) and twodimensional gel electrophoresis associated to matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry analysis. One specific challenge to the study of lower termites is the relatively few data available on abundant symbiotic flagellates. Analysis based on LC-MS/MS revealed few protein families showing assignments to eukaryotes and the taxonomic origin of highly represented actins could not be established. Tubulins proved to be the most suitable protein family with which to identify flagellate populations from hindgut samples using LC-MS/MS, compared with other protein families, although this method targeted few prokaryotes in our assay. Similarly, two-dimensional gel electrophoresis associated to matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry did not succeed in identifying flagellate populations, but did permit the identification of most of the prokaryotic components of the symbiotic system. Finally, fungi and yeasts were identified by both methods. Owing to the lack of sequenced genes in flagellates, targeting tubulins for LC-MS/MS could allow fingerprints of flagellate populations to be established. Experimental and technical improvements might increase the efficiency of identification of prokaryotic populations in the near future, based on metaproteomic development.
We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidiumguajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.
The South American weevil Listronotus bonariensis (Kuschel) is an important pest of pastures in New Zealand. As a component of management strategies for this pest, the South American parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) was released in northern New Zealand during 1991 as a biological control agent. Over the subsequent 5–6 yr, the reproductive biology of M. hyperodae and its relationship to, and effects on, the reproductive phenology and fitness of L. bonariensis were studied at three sites. M. hyperodae was first recovered in the field in December 1991. Subsequently, the incidence of parasitism in L. bonariensis increased to seasonal maxima of 75–90%. There was variable synchrony between parasitoid generations and the two generations of its host, leading to marked seasonal variation in rates of parasitism and parasitoid abundance. Despite marked inter-year variation, abundance of host adult and egg populations declined in the presence of parasitoids. Parasitized host females had lower ovarian maturity scores, had lower egg loads, and exhibited less investment in wing muscle development than females that had escaped parasitism. There was almost complete elimination of egg maturation in parasitized females and these hosts contributed little to population recruitment. Rate of buildup and seasonal maxima in parasitism, frequency of superparasitism, adult abundances, and wing muscle development in adult L. bonariensis varied among the three sites in a manner that was only partially related to climate differences across the 1.83° gradient of latitude. Site effects were weak to absent in measures of reproductive condition in L. bonariensis females.
The coffee berry borer is currently the most important insect pest of coffee worldwide. In shaded coffee farms such as Finca Irlanda in Chiapas, Mexico, natural enemies limit coffee berry borer and potentially prevent outbreaks. This research aimed to determine the effect of ants on coffee berry borer damage and to describe behaviors of Azteca instabilis F. Smith and Pheidole synanthropica (Longino 2009) when encountering the coffee berry borer. To these ends, an ant survey was conducted in a 2,500-m2 plot within the farm. A 4- by 4-m coordinate system was established, and the coffee plant or shade tree closest to the coordinate point was sampled using tuna fish for a total of 168 coffee plants and 46 shade trees sampled. In addition, up to 100 berries were harvested from 138 coffee plants to measure damage and verify the presence of the coffee berry borer. Behavior was determined in the field by placing live coffee berry borer adults on berries and video recording all attacks. Results showed that plants with ants had less percentage of damaged berries and shorter coffee berry borer galleries than plants without ants. However, the length of galleries in plants with A. instabilis showed no significant differences from plants without ants. P. synanthropica was observed carrying coffee berry borer to the nest in 50% of the cases, whereas A. instabilis threw coffee berry borer off of the coffee plant in 79% of the cases. Results indicate that the presence of these species of ants reduce coffee berry borer damage and suggest that different behaviors could explain the pattern of coffee berry borer attack in this agroecosystem.
The Australian tree Melaleuca quinquenervia (Cavanilles) Blake is an invasive weed in wetland systems of Florida. A biological control program targeting M. quinquenervia has resulted in the release of the gall forming midge Lophodiplosis trifida Gagné (Diptera: Cecidomyiidae). Populations of the introduced herbivore readily established at all 24 release sites across the weed's range in Florida, and there was no evidence that founding colony size (100,2,000, or 6,000 adults) influenced herbivore establishment or local population growth rates. Landscape level spread of L. trifida from release sites averaged nearly 6 km/yr, ranging as high as 14.4 km/yr. Prerelease host range testing predicted that L. trifida oviposits indiscriminately on test plant species but does not complete development on any of the test species, including congeners present in Florida. To test the predictability of these host range tests, L. trifida was released in a common garden consisting of 18 test plant species that were interplan ted with M. quinquenervia. Plant species postulated to be at risk experienced no gall development by L. trifida while intermingled M. quinquenervia trees supported 704.8 (± galls per plant. Historically, many introduced Cecidomyiidae have limited effect on plant performance of target weeds because of recruitment of native parasitoids that disrupt biological control efficacy. In contrast to this trend, there has been no evidence to date that parasitoids are exploiting L. trifida in Florida.
Kudzu [Pueraria montana variety lobata (Willd.) Maesen & S. M. Almeida] plant architecture and growth were compared for plants subjected to 4 wk of simulated herbivory (75% leaf cutting) and no damage. Simulated herbivory reduced above-ground and root biomass by 40 and 47%, respectively, whereas total vine length and average length of the 10 longest vines were reduced by 48 and 43%, respectively, compared with control plants. Plant architecture was also affected, with damaged plants showing a significantly reduced proportion of primary vines, shorter secondary vines, and reduced average internode distances compared with the control plants. In natural situations, these changes would reduce the ability of kudzu to compete for light and other resources by affecting the plant's climbing habit.
Acrobasis nuxvorella Neunzig (pecan nut casebearer) is a monophagous herbivore of Carya illinoinensis (Wang.) K. Koch (pecan); both are indigenous to North America, where Carya has evolved for ≈60 million years. We hypothesized that this close association may have resulted in a parallel evolution allowing casebearer to use pecan volatiles to synchronize seasonality. Casebearer overwinters in diapause as a first-instar larva in a hibernaculum attached to a dormant pecan bud. Larval emergence from this structure after diapause or postdiapause quiescence coincides with the onset of pecan bud growth in the spring, and this interaction was the subject of this study. Dormant pecan twigs with hibernacula-infested buds were exposed to a water control or pecan volatiles from ‘Western Schley’ cultivar, and monitored to observe larval response by using a microcalorimeter. Initial testing showed that metabolic heat produced by overwintering larvae remained low and unchanged when exposed to water vapor and significantly increased within a few hours after exposure to volatiles from new pecan foliage. This shows that these larvae in hibernacula are in a physiologically suppressed state of diapause or postdiapause quiescence, from which they detect and respond to these pecan volatiles. Further studies to quantify larval responses showed that 90 and 80% of the larvae became active and emerged from their hibernacula ≈6 d after exposure to Western Schley and ‘Wichita’ volatiles, respectively. Mixtures of 13 sesquiterpenes from those pecan volatiles were identified to induce physiological activity within larvae after hours of exposure, followed some days later by larval emergence from hibernacula. Host volatiles, to our knowledge, have not previously been reported to induce early instar larvae in hibernacula to rouse from a state of physiological arrest to resume normal growth and development. This also has potential for use in pest management.
We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.
It is well understood that forces from multiple trophic levels simultaneously influence herbivore performance, but how the relative strength of these forces vary over space and time is less clear. We evaluated seasonal variation in the impact of bottom—up forces (host condition), top—down forces (natural enemies), and competition on the performance of an exotic wood borer. Tetropium fuscum (F.) (Coleoptera: Cerambycidae) eggs that were either protected or exposed were placed on healthy and stressed red spruce, Picea rubens Sargent, trees at three different times during the natural T. fuscum flight period. We also measured the length of necrotic lesions (i.e., an induced hypersensitive response) that developed in response to attacking T. fuscum. As predicted, T. fuscum performance was usually greater, and induced host defenses lower, on stressed than on healthy trees, but the impact of host condition on T. fuscum performance varied seasonally. Timing of attack was critical, influencing the strength of bottom—up forces and consequently all measures of T. fuscum performance. Survival was reduced when T. fuscum attacked too early (late-May) or too late (late-June), which may result in stabilizing selection for attack time in this species. Parasitism and competition were generally negligible during this study. Our results suggest that timing of attack is critical for this wood borer and that temporal variation in the impact of top—down and bottom—up forces should be considered in other systems.
Despite numerous studies examining feeding injury to cotton (Gossypium spp.) caused by different stages of Lygus hesperus Knight, no consistent trends are apparent. One explanation for inconsistencies among previous results is failure to account for important sources of biological variation. Because it was only recently recognized that feeding behavior and injury differed among adults of different physiological ages, this source of variance was not controlled in earlier studies of Lygus stage-dependent injury. We incorporated this knowledge into video assays and greenhouse experiments to compare feeding behaviors, within-plant distributions, and injury to cotton plants among L. hesperus nymphs and prereproductive adults. Laboratory behavior assays indicated third instars exhibited more stylet-probes, but of shorter duration, compared with prereproductive adults. Numbers and duration of stylet-probes by fifth instars were intermediate to those of third instars and adults. Total time spent stylet-probing was similar among the insect age-classes. On whole plants, third instars tended to reside within the bracts of squares (flower buds) >3 mm in diameter, whereas fifth instars and adults tended to frequent the plant terminals. Adults were more likely than third or fifth instars to be located off the plants at any given observation. Plants exposed to fifth instars exhibited more square abscission and retained fewer squares 3–6 mm in diameter than did plants exposed to third instars or adults. Our results indicated that fifth instars were more injurious to cotton than third instars or prereproductive adults, and that differences in feeding injury corresponded with within-plant distributions exhibited by different L. hesperus age-classes.
Herbivore injury has indirect effects on the growth and performance of host plants through photosynthetic suppression. It causes uncertain reduction in photosynthesis, which likely depends on the degree of infestation. Rapid light curves provide detailed information on the saturation characteristics of electron transport as well as the overall photosynthetic performance of a plant. We examined the effects of different intensities of infestation of the invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on the relative chlorophyll content and rapid light curves of tomato Solanum lycopersicum L. leaves using a chlorophyll meter and chlorophyll fluorescence measurement system, respectively, under greenhouse conditions. After 38 d of P. solenopsis feeding, relative chlorophyll content of tomato plants with initial high of P. solenopsis was reduced by 57.3%. Light utilization efficiency (α) for the initial high-density treatment was reduced by 42.4%. However, no significant difference between initial low-density treatment and uninfested control was found. The values of the maximum electron transport rate and minimum saturating irradiance for initial high-density treatment were reduced by 82.0 and 69.7%, respectively, whereas the corresponding values for low-density treatment were reduced by 55.9 and 58.1%, respectively. These data indicated that changes were induced by P. solenopsis feeding in the relative chlorophyll content and chlorophyll fluorescence of infested tomato plants. The results indicating that low initial infestation by P. solenopsis caused no change in relative leaf chlorophyll content or light utilization efficiency could have been because the plants rapidly adapted to P. solenopsis feeding or because of compensatory photosynthesis.
The invasive whitefly Bemisia tabaci (Gennadius) is a worldwide pest of agricultural crops that feeds on a wide variety of host plants. Although host plant preference is known to vary among B. tabaci biotypes, far less is known about the potential for intraspecific divergence caused by long-term isolation on a single species of host plant. We tested the hypothesis that multigenerational isolation of B. tabaci B, a biotype that has been well-established in China for nearly two decades, on three different host plants would lead to population-level divergence in feeding behaviors. We used individuals from a cabbage-feeding (Brassica oleracea L.) population of B. tabaci B to create three populations reared exclusively on B. oleracea, cucumber (Cucumis sativus L.), or tomato (Lycopersicon esculentum Mill.) for >80 generations. We then used electrical penetration graph techniques to investigate the feeding behavior of the three B. tabaci populations on each of the three host plants (nine total treatments). Across all three host plants, the cabbage-specific population equaled or exceeded the performance of the cucumber-specific (CuSP) and tomato-specific (ToSP) populations. Strikingly, neither CuSP nor ToSP ever had the best feeding performance on their natal hosts. Our results support the hypothesis that feeding differentiation has occurred, but we found no evidence that these changes increased the feeding performance of either CuSP or ToSP. Although confirming that rapid interpopulation divergence is possible, our findings nonetheless suggest that this differentiation did not yield highly adapted populations that might pose problems for future efforts at pest management.
Using electrical penetration graph, salivary flange, and honeydew measurement, this study investigated the effects of feeding-induced intra- and interspecific interactions on feeding behavior and honeydew excretion of brown planthopper (Nilaparvata lugens) compared with small brown planthopper (Laodelphax striatellus). Results showed that many measures of feeding behavior were affected by feeding-induced intra- and interspecific interactions on two different rice varieties. There were significantly fewer salivary flanges for both brown planthopper and small brown planthopper on rice plants with feeding-induced conspecific or heterospecific effects than on relevant control plants. In contrast, only small brown planthopper on rice plants with feeding-induced heterospecific effects had significantly fewer salivary flanges than those with feeding-induced conspecific effects. The mean durations of pathway activities per insect and mean durations from first probe to first sustained phloem ingestion for small brown planthopper were significantly shorter, whereas the mean duration per insect of phloem ingestion was significantly longer, on rice plants with feeding-induced heterospecific effects than those on relevant control plants, as well as rice plants with feeding-induced conspecific effects. Honeydew weights of small brown planthopper were significantly increased by the induced heterospecific effect. Thus, all results indicated indirect, asymmetrical, facilitative effects of induced interspecific interactions on the feeding behavior and honeydew weight for small brown planthopper on both varieties. These findings are consistent with the previously documented asymmetrical effects on performance, with more benefits to small brown planthopper from brown planthopper indirectly. The change of nutrient and induced allelochemistry in host plant probably underlies these facilitative effects.
Tolerance and compensatory ability after invertebrate damage are important components of plant defense and are affected by various endogenous and exogenous factors. Here, we examine the impact of feeding damage caused by different densities of the redlegged earth mite (Halotydeus destructor Tucker) on the performance and recovery of canola and wheat seedlings at different plant developmental stages, and when grown under three levels of moisture stress. Both canola and wheat were susceptible to feeding damage caused by H. destructor at early growth development stages (canola—cotyledon, first and second true leaf stage; wheat—GS10 and GS12), but tolerated damage at the later growth stages (canola—third true leaf stage; wheat—GS14). Wheat plants compensated completely for mite feeding damage, while canola plants showed partial compensation when feeding occurred at the cotyledon and first true leaf stages. Canola was susceptible to immediate feeding damage from H. destructor under all levels of moisture stress and did not compensate for this damage over time when grown in the unstressed and moderately stressed treatments. Under severe moisture stress conditions, plant performance traits and mite density often showed a nonlinear relationship, with growth initially increasing as mite density increased, but then decreasing markedly as densities exceeded 30 mites/100 cm2. Wheat seedlings were susceptible to immediate feeding damage when grown in the unstressed and severe stress conditions, but were generally able to compensate for this damage regardless of moisture conditions. The implications of these results for the management of H. destructor are discussed.
Paederus fuscipes Curtis, a dermatitis linearis causing agent, has received increasing attention from the public, as it poses a serious health threat after mass dispersal into human-dominated areas. Preventive measures against this insect have so far been unsuccessful partly because of limited knowledge about its dispersal pattern. In this study, the dispersal activity of P.fuscipes was studied at infestation-prone residential buildings in Mainland Penang, Malaysia. The dispersal activity of P.fuscipes showed two peaks, that is, from February to April and August to October. Overall, there was no statistical significant correlation between dispersal and climatic parameters, that is, temperature, relative humidity, total rainfall, at all sampling localities. However, dispersal was primarily caused by human activities in rice fields, which accounted for >60% of the variability in dispersal. Particularly, rice harvesting, including straw burning, and cultivation were the major factors triggering P.fuscipes dispersal. These activities presumably disrupted the habitat and normal activities of P.fuscipes and rendered the rice fields unfavorable refuges. In addition, the beetles might also face food shortages after the disturbance of their prey base in the crop fields. The current study provides a predictive tool of P. fuscipes flight periods to ensure insecticide residual spraying is timed in the infestation-prone residential areas before the onset of infestation.
Harmonic radar tagging was investigated as a method for monitoring the movement of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Because adhesive toxicity and tag weight limit the use of this technology, initial efforts focused on selection of the optimal adhesive and design of harmonic radar tags to reduce impact on the movement of stink bugs. A design consisting of a 6-cm-long 0.10-mm-thick silver-plated copper monopole on the anode terminal of a three-contact Schottky barrier diode attached with Gorilla super glue provided a compromise between unimpaired movement and tracking range, adding an additional 8% to the weight of the stink bug while not significantly (P > 0.05) reducing walking or flying mobility in the laboratory. Recovery of tagged stink bugs in cotton, Gossypium hirsutum (L), and fallow fields ranged from 10 to 75% after 24 h, whereas marked stink bugs were recovered at rates of 0–35% by using sweep net or drop cloth sampling. The distance dispersed in the field was not impacted (P > 0.05) by crop, tagged status, or gender of the insect. Future research should examine possible improvements to the harmonic radar transceiver and the wire antenna to decrease encumbrance.
Detection of newly established populations of Agrilus planipennis Fairmaire, the most destructive forest insect to invade the United States, remains challenging. Regulatory agencies currently rely on artificial traps, consisting of baited three-sided panels suspended in the canopy of ash (Fraxinus spp.) trees. Detection trees represent another survey option. Ash trees are girdled in spring to attract ovipositing A. planipennis females then debarked in fall to assess larval presence and density. From 2008–2010, systematic grids of detection trees and artificial traps were established across a 390-km2 area for the SLow Ash Mortality pilot project. We compared probabilities of detection associated with detection trees and artificial traps along varying A. planipennis density proxies estimated as distance-weighted averages of larval counts (detection trees) or adult captures (traps) within 800 m of each detection tree or trap. Detection trees were consistently more likely to be positive, that is, detect A. planipennis, than traps in all three years, even when traps were placed in canopies of detection trees. Probability of detection with a single detection tree was >50% when density proxies for the area were <5 larvae per detection tree, while the probability of detection with an artificial trap placed in the same area was <35%, even when density proxies exceeded 25 larvae per detection tree. At very low densities of <5 larvae per detection tree, using three detection trees would increase detection probabilities to 90%, while five artificial traps would increase the detection probability only to 40%.
Khalid Khallaayoune, Whitney A. Qualls, Edita E. Revay, Sandra A. Allan, Kristopher L. Arheart, Vasiliy D. Kravchenko, Rui-De Xue, Yosef Schlein, John C. Beier, Günter C. Müller
We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and field with the low-risk active ingredient dinotefuran against mosquito populations. Preliminary laboratory assays indicated that dinotefuran in solution with the sugar baits was ingested and resulted in high mortality of female Culex quinquefasciatus Say and Aedes aegypti Linnaeus. Field studies demonstrated >70% reduction of mosquito populations at 3 wk post-ATSB application. Nontarget feeding of seven insect orders—Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Orthoptera, and Neuroptera—was evaluated in the field after application of attractive sugar baits (ASB) on vegetation by dissecting the guts and searching for food dye with a dissecting microscope. Nontargets were found stained with ASB 0.9% of the time when the application was applied on green nonflowering vegetation. Only two families were significantly impacted by the ASB application: Culicidae (mosquitoes) and Chironomidae (nonbiting midges) of the order Diptera. Pollinators of the other insect orders were not significantly impacted. No mortality was observed in the laboratory studies with predatory nontargets, wolf spiders or ground beetles, after feeding for 3 d on mosquitoes engorged on ATSB applied to vegetation. Overall, this novel control strategy had little impact on nontarget organisms, including pollinators and beneficial insects, and was effective at controlling mosquito populations, further supporting the development of ATSB for commercial use.
We determined the attractiveness of a new chemical lure compared with fermented food baits in use for trapping Drosophila suzukii Matsumura, spotted wing drosophila (Diptera: Drosophilidae), in Connecticut, New York, and Washington in the United States and at Dossenheim in Germany. The chemical lure (SWD lure) and food baits were compared in two types of traps: the dome trap and a cup trap. Regardless of trap type, numbers of male and female D. suzukii trapped were greater with the SWD lure compared with apple cider vinegar (ACV) baits at the Washington and New York sites, and were comparable with numbers of D. suzukii captured with a wine plus vinegar bait (W V) at Germany site and a combination bait meant to mimic W V at the Connecticut site. Averaged over both types of attractants, the numbers of D. suzukii captured were greater in dome traps than in cup traps in New York and Connecticut for both male and female D. suzukii and in Washington for male D. suzukii. No such differences were found between trap types at the Washington site for female and Germany for male and female D. suzukii. Assessments were also made of the number of large (>0.5cm) and small (<0.5cm) nontarget flies trapped. The SWD lure captured fewer nontarget small flies and more large flies compared with ACV bait in New York and fewer nontarget small flies compared with W V in Germany, although no such differences were found in Washington for the SWD lure versus ACV bait and in Connecticut for the SWD lure versus the combination bait, indicating that these effects are likely influenced by the local nontarget insect community active at the time of trapping. In New York, Connecticut, and Germany, dome traps caught more nontarget flies compared with cup traps. Our results suggest that the four-component SWD chemical lure is an effective attractant for D. suzukii and could be used in place of fermented food-type baits.
The response of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to different emission rates of its pheromone, (3E, 8Z, 11Z)-tetradecatrienyl acetate, was measured in two greenhouse trials with traps baited with mesoporous dispensers. For this purpose, weekly moth trap catches were correlated with increasing pheromone emission levels by multiple regression analysis. Pheromone release profiles of the dispensers were obtained by residual pheromone extraction and gas chromatography quantification. In the first trial carried out in summer 2010, effect of pheromone emission was significant as catches increased linearly with pheromone release rates up to the highest studied level of 46.8 µg/d. A new trial was carried out in spring 2011 to measure the effect of the emission factor when pheromone release rates were higher. Results demonstrated that trap catches and pheromone emission fitted to a quadratic model, with maximum catches obtained with a release level of 150.3 µg/d of (3E, 8Z, 11Z)-tetradecatrienyl acetate. This emission value should provide enhanced attraction of T. absoluta and improve mass trapping, attract-and-kill, or monitoring techniques under greenhouse conditions in the Mediterranean area.
Development of ectotherms is highly temperature dependent. Studies using variable thermal environments can improve ecological relevance of data because organisms naturally face day-to-day stochastic temperature fluctuations as well as seasonal changes in the amplitude of such daily fluctuations. The objective of this study was to investigate if, and to what extent, the use of constant temperatures is justified in studies of the model species, yellow dung fly, Scatophaga stercoraria (L.). We examined the effect of temperature fluctuation on the expression of several life history traits and the effect on subsequent adult longevity. We used two fluctuating temperature treatments with the same mean but different amplitudes (15/21°C, 12/24°C; 12/12 h), and three constant temperature treatments spanning the wide temperature range faced in the wild (12, 18, and 24°C). Large temperature fluctuation was mostly detrimental (lower juvenile survival, slower growth, smaller body size, and longer development), whereas moderate temperature fluctuation usually gave responses similar to the constant regime. When developing in fluctuating temperatures, adult longevity (no effect), body size (lower), and wing shape (narrower wings) deviated from the expectations based on the constant temperature reaction norms, presumably because of acclimation responses. Contrary to some studies no obvious beneficial effects of moderate temperature fluctuation were observed. Instead, yellow dung flies seem to canalize development in the face of temperature fluctuation up to a point when detrimental effects become unavoidable. The relatively greater effects of extreme constant developmental temperatures question their biological relevance in experiments.
We investigated the life histories of two green lacewing species, Chrysoperla johnsoni Henry, Wells, and Pupedis from western North America, and Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) from western Europe in the laboratory. There were both similarities and differences in their life history characteristics. C. johnsoni exhibited a significantly longer developmental time for egg, first instar, and pupal stage than C. carnea. C. carnea exhibited a significantly shorter egg to adult developmental time than C. johnsoni. Except for the pupal stage, the survival of all other life history stages was not species-specific. All C. carnea pupae were able to develop into adults, whereas only 92% of adult eclosion was observed from C. johnsoni pupae. There was no difference in egg to adult survival between the two species. Adult longevity was not species- or gender-specific. Sex ratio of emerged adults was ≈50% in both species. C. johnsoni had a longer preoviposition period than C. carnea, while the oviposition period was similar for both species. C.carnea had higher lifetime fecundity and fertility than C. johnsoni, as measured by total number of eggs laid and production of fertile eggs, respectively. Egg viability did not differ between the two species. Intrinsic rates of increase (rm) for C. carnea and C. johnsoni were 0.161 and 0.132, respectively. All lacewings used in this experiment were laboratory reared under environmental conditions similar to field as possible. This is the first available information on the life history parameters of C. johnsoni.
The walnut twig beetle (Pityophthorus juglandis Blackman) vectors Geosmithia morbida, the causal agent of thousand cankers disease in Juglans, and is particularly damaging to Juglans nigra L. (black walnut). Native hosts of P. juglandis are distributed in the southwestern United States where winter temperatures tend to be higher than those found within the native range of black walnut. To better understand temperature effects on survival of P. juglandis, we initiated studies to determine: 1) seasonal variations in cold tolerance, as measured by the supercooling point (SCP), and 2) upper and lower lethal temperatures (LT). In the lower LT study, Xyleborinus saxeseni (Ratzeberg) was tested for comparison. Insects were either exposed to increasing or decreasing temperatures and then checked for survival. Upper and lower LTs were estimated using a logistic model. For the SCP study, data were grouped into seasons. Seasonal mean SCPs were highest in summer (-15.4°C) and lowest in fall (-18.1°C). The upper lethal limit estimations required to kill 99% of the population (LT99) for adults and larvae were 52.7 and 48.1°C, respectively, and lower limit LT99 estimations for adults and larvae were -18.1 and -18.7°C, respectively. The lower median LT (LT50) of X. saxeseni was -24.7°C. These studies, as well as beetle survival in infested Colorado trees where temperatures reached -29°C in February 2011, suggest P. juglandis could survive the winter in much of the native range of black walnut, but may be limited in trees where temperatures regularly exceed the lower LT.
The fungus-growing subterranean termite Odontotermes formosanus Shiraki (Isoptera: Termitidae) is a destructive pest in Southeast Asia. To facilitate studies on the biology, ecology, and control of O. formosanus, we isolated and characterized nine novel microsatellite loci from a mixed partial genomic library of O. formosanus and the sympatric Macrotermes barneyi Light enriched for di-, tri-, and tetranucleotide repeats. We screened these loci in three populations of O. formosanus from China. All loci were polymorphic. Three loci showed heterozygote deficit possibly because of the presence of null alleles. The remaining six loci with 4–15 alleles per locus and an average observed heterozygosity of 0.15–0.60 across populations were used for population genetic analysis. Populations from different provinces (Guangdong, Jiangxi, and Hubei) were genetically differentiated, but the genetic distance between populations was surprisingly small (FST: 0.03–0.08) and the gene flow was considerable (Nem: 3–8), despite the geographical distance being >300 km. Genetic diversity within populations was low (allelic richness: 5.1–6.3) compared with other subterranean dwelling termites, but consistent with the diversity in species of the family Termitidae. Microsatellite markers developed for O. formosanus will allow further studies to examine the phylogeography, population genetic and colony breeding structure, dispersal ranges, and size of foraging territories in this and closely related species, as well as aid in assessing treatment success.
In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species Rhagoletis zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple production for export. Here, we attempt to distinguish the two species by scoring R. pomonella and R. zephyria populations from western and south—central Washington for a set of 11 nuclear markers, including four single nucleotide polymorphisms (SNPs) developed for rapid and inexpensive genotyping using Taqman real-time quantitative—polymerase chain reaction. We show that the four SNPs maybe adequate in most cases for distinguishing whether a fly originated from apple or black hawthorn (the two major host plants for R. pomonella representing an economic risk) versus snowberry (the major host for R. zephyria, and not a commercial threat). However, directional introgression of R. zephyria alleles into R. pomonella can complicate the identification of flies of mixed ancestry based only on the four SNPs. Moreover, this problem is more acute in the sensitive apple-growing regions of central Washington where our results imply hybridization is common. Consequently, application of the four SNP quantitative—polymerase chain reaction assay can immediately assist ongoing apple maggot monitoring, while the development of additional genetic markers through next-generation sequencing would be valuable for increasing confidence in species identification and for assessing the threat posed by hybridization as R. pomonella further spreads into the more arid apple-growing regions of central Washington.
Ultraviolet A (UVA) radiation, the major component of solar ultraviolet (UV) radiation reaching the earth's surface, leads to negative effects in insects, such as oxidative stress, photoreceptor damage, and cell death. To better understand the molecular mechanisms of insect response to UVA radiation, suppression subtractive hybridization (SSH) and real-time quantitative polymerase chain reaction approaches were combined to reveal differential transcript expression in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). In this study, two subtractive cDNA libraries were constructed and sequenced, obtaining 131 high-quality unique expressed sequence tags (ESTs) that were up- or downregulated in D. melanogaster exposed to UVA radiation for 0.5 h. Of the 131 ESTs, 102 unique ESTs were differentially expressed and classified into 10 functional categories. The results showed that UVA radiation induces expression of genes related to stress and defense response and metabolism. Potential transcription factor binding motifs upstream of these genes are associated with multiple signaling pathways that may help the insect cope with the stress of UVA radiation. To our knowledge, this is the first analysis of insect response to UVA radiation at the transcriptional level. Our results reveal that UVA radiation influences the expression profiles of stress-responsive genes and provide further insights into the mechanisms of adaptive response to UVA radiation stress.
The objective of the current study was to evaluate the impact of wheat resistance on digestibility of Schizaphis graminum (Rondani) in the Coccinella septempunctata L. gut. Four wheat genotypes including an ancient wheat species (Einkorn) and three Iranian wheat genotypes (Azadi, Ommid, and Moghan2) were used. Einkorn was found to be a highly resistant species, while Azadi, Ommid, and Moghan2 were characterized as resistant, semiresistant, and susceptible genotypes, respectively, based on some biological parameters of S. graminum on these plants. Adult C. septempunctata starved for 24 h were fed one S. graminum reared on the selected wheat genotypes. A semiquantitative polymerase chain reaction technique using specific primers for the gene cytochrome oxidase II (COII) of S. graminum showed a significant effect of plant resistance on S. graminum DNA disappearance time. The DNA half-lives of S. graminum fed on Einkorn, Azadi, Ommid, and Moghan2 in C. septempunctata gut was 3.3, 3.6, 4.8, and 6.7 h, respectively. The findings suggest that digestibility of S. graminum fed on resistant plant genotypes is higher than those fed on susceptible plants because of the lighter weights and smaller sizes of the first. This phenomenon could result in faster ingestion of S. graminum by C. septempunctata on these resistant plants. It is also possible that some metabolites found differentially in Einkorn and Azadi genotypes may have affected S. graminum quality as a food for C. septempunctata.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere