When hosts are distributed in discrete patches, ways in which parasitoids search and move between patches affect variability in parasitism risk among hosts and host–parasitoid population dynamics. This study examined the patch searching behavior of the solitary pupal parasitoid Dirhinus giffardii (Silvestri) (Hymenoptera: Chalcididae) on its host Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) which pupates underground. In a series of two laboratory experiments, host patches were created by burying pupae in peat moss, and the foraging behavior of the parasitoid was recorded. If D. giffardii can detect underground patches, the parasitoid would preferentially exploit high quality patches where the quality of a patch is represented by the number of unparasitized hosts in the patch. The first experiment investigated the effect of patch size (i.e., number of hosts) and host status (whether hosts are parasitized or unparasitized) on patch searching behavior. Results showed parasitoids were more likely to exploit a large patch than a small patch regardless of host status. The second experiment examined the effect of relative locations of patches by establishing three patches (one large patch and two small patches with unequal inter-patch distances from the large patch). The probability of parasitism was lower for the small patch close to the large patch than the small patch far from the large patch. The parasitism patterns described in the experiments have important implications on the distribution of parasitism risk among hosts and population dynamics.
How to translate text using browser tools
27 October 2022
Searching of Underground Host Patches by a Pupal Parasitoid
Toshinori Okuyama
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
<
Previous Article
|
Environmental Entomology
Vol. 51 • No. 5
October 2022
Vol. 51 • No. 5
October 2022
Bactrocera dorsalis
Dirhinus giffardii
foraging
parasitism risk
variability