Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In 1966, William D. Hamilton published a landmark paper in evolutionary biology: “The Moulding of Senescence by Natural Selection.” It is now apparent that this article is as important as his better-known 1964 articles on kin selection. Not only did the 1966 article explain aging, it also supplied the basic scaling forces for natural selection over the entire life history. Like the Lorentz transformations of relativistic physics, Hamilton's Forces of Natural Selection provide an overarching framework for understanding the power of natural selection at early ages, the existence of aging, the timing of aging, the cessation of aging, and the timing of the cessation of aging. His twin Forces show that natural selection shapes survival and fecundity in different ways, so their evolution can be somewhat distinct. Hamilton's Forces also define the context in which genetic variation is shaped. The Forces of Natural Selection are readily manipulable using experimental evolution, allowing the deceleration or acceleration of aging, and the shifting of the transition ages between development, aging, and late life. For these reasons, evolutionary research on the demographic features of life history should be referred to as “Hamiltonian.”
Discoveries of mutations conferring resistance to infectious diseases have led to increased interest in the evolutionary dynamics of disease resistance. Several recent papers have estimated the historical strength of selection for mutations conferring disease resistance. These studies are based on simple population genetic models that do not take account of factors such as spatial and family structure. Such factors may have a substantial impact on the strength of natural selection through inclusive fitness effects. That is, people have a strong tendency to live with relatives and therefore have a high probability of transmitting infectious diseases to them. Thus, an allele that protects an individual against disease infection also protects that individual's family members. Because some of these family members are likely to also be carrying the allele, selection for that allele is magnified by family structure. In this paper, I use mathematical modeling techniques to explore the impact of such kin selection on the strength of selection for infectious disease resistance alleles. I show that if the resistance allele has the same proportional effect on both within- and between-family transmission, then the impact of kin selection is relatively minor. Selection coefficients are increased by 5–35%, with a greater benefit for weaker alleles. The reason is that an individual with a strong resistance allele does not need much protection from infection by family members and thus does not benefit much from their alleles. The effect of kin selection can be dramatic, however, if the resistance allele has a larger effect on between-family transmission than within-family transmission (which can occur if between-family infection rates are much smaller than within-family rates), increasing selection coefficients by as much as two- to threefold. These results show conditions when it is important to consider family structure in estimates of the strength of selection for infectious disease resistance alleles.
Nonrandom patterns of gene dispersal have been identified as possible causes of genetic structuring within populations. Attempts to model these patterns have generally focused solely on the effects of isolation by distance, but the processes involved are more complex than such modeling suggests. Here, we extend considerations of gene dispersal processes beyond simple isolation by distance effects by directly evaluating the effects of kin-structured gene dispersal mediated by the group dispersal of related seeds within fruits (i.e., kin-structured seed dispersal) by birds on genetic structure in Ilex leucoclada, a clonal dioecious shrub. To examine the genetic structure patterns, we established two 30×30 m plots (one with immature soils in old-growth forest and one in secondary forest, designated IM and SC, respectively) with different I. leucoclada stem densities. In these two plots 145 and 510 stems were found, representing 78 and 85 genets, respectively, identified by analyzing their genotypes at eight microsatellite loci. The clonal structure was stronger in the SC plot than in the IM plot. Correlograms of coancestry for genets in both plots exhibited significant, positive, high values in the shortest distance class, indicating the presence of strong genetic structure. However, Sp statistics revealed that the pattern of the genetic structure differed between the plots. In addition, to estimate the family structure within fruits, we sampled forty fruits, in total, from 15 randomly selected plants in the area around the IM and SC plots, and found that 80% of the fruits were multiseeded and 42–100% of the multiseeded fruits contained at least one pair of full sibs. Simulations based on these estimates demonstrated that the group dispersal of related seeds produced through correlated mating both within and across fruits, but not unstructured half-sib dispersal, could generate the observed magnitude and trends of genetic structure found in the IM plot. Furthermore, in addition to kin-structured seed dispersal, isolation by distance processes is also likely to promote genetic substructuring in the SC plot. After discussing possible ecological factors that may have contributed to the observed genetic structure, we contrast our results with those predicted by general isolation by distance models, and propose that kin-structured seed dispersal should promote some evolutionary phenomena, and thus should be incorporated, where appropriate, in models of gene dispersal in natural plant populations.
According to sexual cannibalism theory, male complicity in terminal mating can be adaptive when the male's future reproductive value is low relative to the benefits of self sacrifice. Spiders and insects that exhibit male sacrifice behavior (either complicity in cannibalism or spontaneous death associated with copulation) often also have male genitalia that stereotypically become broken or disfigured the first time they are used for copulation, potentially lowering his future reproductive value. Theoretical work on monogamy has identified male bias in the effective sex ratio as a precursor to the evolution of monogamy (including male sacrifice) as an adaptive form of paternity protection. Using phylogeny-based statistics and drawing on several phylogenetic studies of araneoid spiders, I investigate relationships between male sacrifice behavior, genital mutilation, extreme sexual size dimorphism, and the accumulation of multiple males in the female web (as an indicator of a male-based effective sex ratio). This investigation focuses on araneoid spiders because several independent origins of sacrifice behavior are known for this group and the phylogenetic structure of the lineage is relatively well studied. I report that male genital mutilation is significantly correlated with sacrifice behavior and argue that this finding is consistent with sexual cannibalism theory. Male sacrifice behavior is also correlated with male accumulation, a result that is consistent with theoretical work on the evolution of monogamy. Male accumulation and extreme sexual size dimorphism are correlated suggesting that sex-based differences in maturation time can lead to a male biased effective sex ratio. Similar patterns of correlated characters may hold for some insect taxa. Studying traits that have appeared independently in multiple lineages is a powerful method for developing general theories about the evolution of biological phenomena.
As a classical example of a sexually selected trait, the horns of male bovids offer a prime opportunity to identify predictors of the intensity of sexual selection. Here I use the comparative method to quantify sexual and natural selection pressures behind interspecific variation in horn length. I show that male horn length depends on factors proposed to affect the mean mate number per mating male, correlating positively with group size and negatively with male territoriality. This suggests that whereas group size increases the opportunity for sexual selection, territoriality reduces it because territorial males are unable to follow and monopolize female groups as effectively as males in nonterritorial species. Sexual body size dimorphism also correlates positively with group size and negatively with territoriality, corroborating these factors as predictors of the intensity of sexual selection on males. Female horn length was unaffected by the factors related to mating system, suggesting that this trait is mainly under natural selection. Using female horn length as a proxy for forces of natural selection revealed a negative effect on male horn length. Thus where natural selection favors female horns, possibly as effective weapons against predators, a similar selection pressure on males might prevent them from evolving too elaborate horns through sexual selection. There was no correlation found between horn length and latitude, thus providing no support for the hypothesis that horns have a thermoregulatory function.
Agonistic behavior between heterospecifics, in which individuals of one species attack another, may cause a subordinate species to shift resource or habitat use. Subsequent evolutionary responses to selection may mimic shifts expected under ecological character displacement, but with no role played by exploitative competition. Alternatively, aggressive behavior can evolve when fitness is improved by excluding members of a coexisting species from a defendable resource through interference. We tested whether heterospecific agonistic behavior has evolved in brook stickleback (Culaea inconstans) by comparing replicate allopatric populations to those sympatric with ninespine stickleback (Pungitius pungitius). We also tested for heritable variation in heterospecific aggressive behavior by rearing family groups in a common environment. Allopatric populations of brook stickleback were more aggressive than ninespine stickleback, suggesting that pre-existing aggression in brook stickleback contributed to niche shifts by ninespine stickleback. In addition, sympatric adult brook stickleback were more aggressive toward ninespine stickleback than brook stickleback from allopatric populations. Overt heterospecific aggressive behaviors were heritable, and aggression in juvenile brook stickleback increased with age in sympatric but not in allopatric populations reared in a common environment. Brook stickleback have evolved increased aggression when they coexist with ninespine stickleback. These stickleback communities have been structured by both evolved and pre-existing variation in heterospecific aggressive behavior in brook stickleback.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.
Over the past several decades biologists' fascination with plant–herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.
Coevolutionary associations between hosts and symbionts (or parasites) are often reflected in correlated patterns of divergence as a consequence of limitations on dispersal and establishment on new hosts. Here we show that a phylogenetic correlation is observed between chaetodactylid mites and their hosts, the long-tongued bees; however, this association manifests itself in an atypical fashion. Recently derived mites tend to be associated with basal bee lineages, and vice versa, ruling out a process of cospeciation, and the existence of mites on multiple hosts also suggests ample opportunity for host shifts. An extensive survey of museum collections reveals a pattern of infrequent host shifts at a higher taxonomic level, and yet, frequent shifts at a lower level, which suggests that ecological constraints structure the coevolutionary history of the mites and bees. Certain bee traits, particularly aspects of their nesting behavior, provide a highly predictive framework for the observed pattern of host use, with 82.1% of taxa correctly classified. Thus, the museum survey and phylogenetic analyses provide a unique window into the central role ecology plays in this coevolutionary association. This role is apparent from two different perspectives—as (a) a constraining force evident in the historical processes underlying the significant correlation between the mite and bee phylogenies, as well as (b) by the highly nonrandom composition of bee taxa that serve as hosts to chaetodactylid mites.
Richard P. Shefferson, D. Lee Taylor, Michael Weiß, Sigisfredo Garnica, Melissa K. McCormick, Seth Adams, Hope M. Gray, Jack W. McFarland, Tiiu Kull, Kadri Tali, Tomohisa Yukawa, Takayuki Kawahara, Kazumitsu Miyoshi, Yung-I. Lee
Although coevolution is acknowledged to occur in nature, coevolutionary patterns in symbioses not involving species-to-species relationships are poorly understood. Mycorrhizal plants are thought to be too generalist to coevolve with their symbiotic fungi; yet some plants, including some orchids, exhibit strikingly narrow mycorrhizal specificity. Here, we assess the evolutionary history of mycorrhizal specificity in the lady's slipper orchid genus, Cypripedium. We sampled 90 populations of 15 taxa across three continents, using DNA methods to identify fungal symbionts and quantify mycorrhizal specificity. We assessed phylogenetic relationships among sampled Cypripedium taxa, onto which we mapped mycorrhizal specificity. Cypripedium taxa associated almost exclusively with fungi within family Tulasnellaceae. Ancestral specificity appears to have been narrow, followed by a broadening after the divergence of C. debile. Specificity then narrowed, resulting in strikingly narrow specificity in most of the taxa in this study, with no taxon rewidening to the same extant as basal members of the genus. Sympatric taxa generally associated with different sets of fungi, and most clades of Cypripedium-mycorrhizal fungi were found throughout much of the northern hemisphere, suggesting that these evolutionary patterns in specificity are not the result of biogeographic lack of opportunity to associate with potential partners. Mycorrhizal specificity in genus Cypripedium appears to be an evolvable trait, and associations with particular fungi are phylogenetically conserved.
Genetic variation for parasite resistance occurs in most host populations. Costs of resistance, manifested as reduced fitness of resistant genotypes in the absence of parasitism, can be an important factor contributing to the maintenance of this variation. One powerful tool for detecting costs of resistance is the study of correlated responses to artificial selection. Provided that experimental lines are recently derived from large outbreeding populations, and that inbreeding is minimized during the experiment, correlated responses to selection are expected to be strong indicators of pleiotropy. We artificially selected for elevated behavioral resistance against an ectoparasitic mite (Macrocheles subbadius) in replicate populations of the fly Drosophila nigrospiracula. Resistance was modeled as a threshold trait, and the realized heritability of resistance was estimated to be 12.3% (1.4% SE) across three replicate lines recently derived from nature. We contrasted the longevity and fecundity of resistant and control (unselected) flies under a variable thermal environment. We report that reduced fecundity is a correlated response to artificial selection for increased resistance, and that the strength of this effect increases from 25° to 29°C. In contrast, longevity differences were not detected between resistant and control lines at either temperature. These findings are robust as they were confirmed with an independent set of experimental lines. Thus, our results identify a negative genetic correlation between ectoparasite resistance and an important life-history trait. That a correlated response was only detected for fecundity, and not longevity, suggests that the genetic correlation is attributable to pleiotropic effects with narrower effects than reallocation of a general resource pool within the organism, although other interpretations are discussed. Combined with fluctuating parasite-mediated selection and temperature, the presence of this trade-off may contribute to the maintenance of genetic variation for resistance in natural populations.
We searched for quantitative trait loci (QTL) underlying fitness-related traits in a free-living pedigree of 588 Soay sheep in which a genetic map using 251 markers with an average spacing of 15 cM had been established previously. Traits examined included birth date and weight, considered both as maternal and offspring traits, foreleg length, hindleg length, and body weight measured on animals in August and jaw length and metacarpal length measured on cleaned skeletal material. In some cases the data were split to consider different age classes separately, yielding a total of 15 traits studied. Genetic and environmental components of phenotypic variance were estimated for each trait and, for those traits showing nonzero heritability (N=12), a QTL search was conducted by comparing a polygenic model with a model including a putative QTL. Support for a QTL at genome-wide significance was found on chromosome 11 for jaw length; suggestive QTL were found on chromosomes 2 and 5 (for birth date as a trait of the lamb), 8 (birth weight as a trait of the lamb), and 15 (adult hindleg length). We discuss the prospects for refining estimates of QTL position and effect size in the study population, and for QTL searches in free-living pedigrees in general.
We investigate the pervasiveness of hybridization and mitochondrial introgression in Neodiprion Rohwer (Hymenoptera; Diprionidae), a Holarctic genus of conifer-feeding sawflies. A phylogenetic analysis of the lecontei species group revealed extensive discordance between a contiguous mitochondrial region spanning three genes (COI, tRNA-leucine, and COII) and three nuclear loci (EF1α, CAD, and an anonymous nuclear locus). Bayesian tests of monophyly and Shimodaira–Hasegawa (SH) tests of topological congruence were consistent with mitochondrial introgression; however, these patterns could also be explained by lineage sorting (i.e., deep coalescence). Therefore, to explicitly test the mitochondrial introgression hypothesis, we used a novel application of coalescent-based isolation with migration (IM) models to measure interspecific gene flow at each locus. In support of our hypothesis, mitochondrial gene flow was consistently higher than nuclear gene flow across 120 pairwise species comparisons (P < 1 × 10−12). We combine phylogenetic and coalescent evidence to identify likely cases of recent and ancient introgression in Neodiprion, and based on these observations, we hypothesize that shared hosts and/or pheromones facilitate hybridization, whereas disparate abundances between hybridizing species promote mitochondrial introgression. Our results carry implications for phylogenetic analysis, and we advocate the separation of high and low gene flow regions to inform analyses of hybridization and speciational history, respectively.
Understanding the factors that contribute to the formation of population genetic structure is a central goal of phylogeographic research, but achieving this goal can be complicated by the stochastic variance inherent to genetic processes. Statistical approaches to testing phylogeographic hypotheses accommodate this stochasticity by evaluating competing models of putative historical population structure, often by simulating null distributions of the expected variance. The effectiveness of these tests depends on the biological realism of the models. Information from the fossil record can aid in reconstructing the historical distributions of some taxa. However, for the majority of taxa, which lack sufficient fossils, paleodistributional modeling can provide valuable spatial-geographic data concerning ancestral distributions. Paleodistributional models are generated by projecting ecological niche models, which predict the current distribution of each species, onto a model of past climatic conditions. Here, we generate paleodistributional models describing the suitable habitat during the last glacial maximum for lineages from the mesic forests of the Pacific Northwest of North America, and use these models to generate alternative phylogeographic hypotheses. Coalescent simulations are then used to test these hypotheses to improve our understanding of the historical events that promoted the formation of population genetic structure in this ecosystem. Results from Pacific Northwest mesic forest organisms demonstrate the utility of these combined approaches. Paleodistribution models and population genetic structure are congruent across three amphibian lineages, suggesting that they have responded in a concerted manner to environmental change. Two other species, a willow and a water vole, despite being currently codistributed and having similar population genetic structure, were predicted by the paleodistributional model to have had markedly different distributions during the last glacial maximum. This suggests that congruent phylogeographic patterns can arise from incongruent ancestral distributions. Paleodistributional models introduce a much-needed spatial-geographic perspective to statistical phylogeography. In conjunction with coalescent models of population genetic structure, they have the potential to improve our understanding of the factors that promote population divergence and ultimately produce regional patterns of biodiversity.
Determining whether morphological trends in fossil species represent evolution within a lineage or lateral shifts in morphologically variable populations through time requires a thorough examination of the details of both morphology and paleoenvironment in time and space. The purpose of this study is to explore at high resolution the relationship between morphology of the trilobite Flexicalymene granulosa and paleoenvironmental conditions in Upper Ordovician deposits of southwestern Ohio and northern Kentucky. This is achieved by using geometric morphometrics to measure high-resolution morphological changes and by using gradient analysis to capture environmental gradients underlying faunal distribution patterns. Quantitatively comparing the outcomes of these two techniques provides an assessment of whether shape changes relates to environment. Results indicate that a significant amount of shape change, seen as an anteromedial movement of the eye region over time, corresponds to ordination scores. This suggests a relationship between certain aspects of morphology and environment. The combination of these quantitative techniques has provided the foundation for determining whether morphological trends within F. granulosa represent evolution or temporal shifts in geographic variation. Future work will involve examining this relationship in greater detail both geographically and stratigraphically.
Nested clade phylogeographic analysis (NCPA) is a popular method for reconstructing the demographic history of spatially distributed populations from genetic data. Although some parts of the analysis are automated, there is no unique and widely followed algorithm for doing this in its entirety, beginning with the data, and ending with the inferences drawn from the data. This article describes a method that automates NCPA, thereby providing a framework for replicating analyses in an objective way. To do so, a number of decisions need to be made so that the automated implementation is representative of previous analyses. We review how the NCPA procedure has evolved since its inception and conclude that there is scope for some variability in the manual application of NCPA. We apply the automated software to three published datasets previously analyzed manually and replicate many details of the manual analyses, suggesting that the current algorithm is representative of how a typical user will perform NCPA. We simulate a large number of replicate datasets for geographically distributed, but entirely random-mating, populations. These are then analyzed using the automated NCPA algorithm. Results indicate that NCPA tends to give a high frequency of false positives. In our simulations we observe that 14% of the clades give a conclusive inference that a demographic event has occurred, and that 75% of the datasets have at least one clade that gives such an inference. This is mainly due to the generation of multiple statistics per clade, of which only one is required to be significant to apply the inference key. We survey the inferences that have been made in recent publications and show that the most commonly inferred processes (restricted gene flow with isolation by distance and contiguous range expansion) are those that are commonly inferred in our simulations. However, published datasets typically yield a richer set of inferences with NCPA than obtained in our random-mating simulations, and further testing of NCPA with models of structured populations is necessary to examine its accuracy.
Understanding the variation within and between populations in important male mating traits and female preferences is crucial to theories concerning the origin of sexual isolation by coevolution or other processes. There have been surprisingly few studies on the extent of variation and covariation within and between populations, especially where the evolutionary relationships between populations are understood. Here we examine variation in female preferences and a sexually selected male song trait, the carrier frequency of the song, within and between populations from different phylogeographic clusters of Drosophila montana. Song is obligatory for successful mating in this species, and both playback and field studies implicate song carrier frequency as the most important parameter in male song. Carrier frequency varied among three recently collected populations from Oulanka (Finland), Vancouver (Canada), and Colorado (central United States), which represent the main phylogeographic groups in D. montana. Males from Colorado had the most distinct song frequency, which did not follow patterns of genetic differentiation. There was considerable variation in preference functions within, and some variation between, populations. Surprisingly, females from three lines from Colorado seem to have preferences disfavoring the extreme male trait found in this population. We discuss sources of selection on male song and female preference.
Theory predicts that when sperm compete numerically, selection will favor males who vary the number of sperm they transfer with the immediate level of sperm competition. In this study, I measured male mating investment in response to both female mating status (virgin vs. mated) and the number of foreign sperm stored by females in a previous mating in the scorpionfly Panorpa cognata. Female sperm storage was manipulated by interrupting copulations at different time points. Female mating status did not significantly influence male mating investment, but resource-limited males invested strategically in relation to the amount of sperm stored by females in a previous mating. I found continuously decreasing male investment in response to increasing amounts of competing sperm. These results demonstrate an unprecedented male ability to assess the number of sperm stored by females. As a result, males are capable of an extraordinarily fine-tuned reaction to the intensity of sperm competition.
It is generally thought that random mutations will, on average, reduce an organism's fitness because resulting phenotypic changes are likely to be maladaptive. This relationship leads to the prediction that mutations that alter more phenotypic traits, that is, are more pleiotropic, will impose larger fitness costs than mutations that affect fewer traits. Here we present a systems approach to test this expectation. Previous studies have independently estimated fitness and morphological effects of deleting all nonessential genes in Saccharomyces cerevisiae. Using datasets generated by these studies, we examined the relationship between the pleiotropic effect of each deletion mutation, measured as the number of morphological traits differing from the parental strain, and its effect on fitness. Pleiotropy explained ∼18% of variation in fitness among the mutants even once we controlled for correlations between morphological traits. This relationship was robust to consideration of other explanatory factors, including the number of protein–protein interactions and the network position of the deleted genes. These results are consistent with pleiotropy having a direct role in affecting fitness.
Natural history museums play a significant role in educating the general public about evolution. This article describes Explore Evolution, one of the largest evolution education projects funded by the National Science Foundation. A group of regional museums from the Midwestern United States worked with leading evolutionary scientists to create multiple permanent exhibit galleries and a curriculum book for youth. This program invites the public to experience current evolutionary research on organisms that range in size from HIV to whales. Learning research is being conducted on museum visitors to understand how they reason about evolution and to determine what influences the process of conceptual change.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere