Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
We describe two new species of Ischnocnema from the states of Minas Gerais and Espírito Santo, southeastern Brazil, based on morphological, bioacoustical, and molecular data. We use three mitochondrial and two nuclear genes in Bayesian inference and maximum likelihood analyses to assess their phylogenetic placement within the I. guentheri series. The two new species group with I. oea in a well-supported clade in both analyses and have a calcar tubercle that is at least as long as wide. This type of tubercle seems to be a putative synapomorphy for the clade. We provide a revised diagnosis for the I. guentheri series, with characters shared by all its members, and discuss the close relationship between the I. parva and the I. guentheri series.
The American Alligator (Alligator mississippiensis) is a crocodilian species that was once listed as endangered in the United States but is now harvested both recreationally and commercially throughout its range in the southeastern United States. Harvest of alligators typically includes egg collecting and hunting. However, review of scientific literature reveals that the effects of harvest on alligator populations have received little scientific scrutiny. We built a theoretical simulation model to evaluate the impact of several harvest strategies on long-term (i.e., 100 yr) alligator population trends. We used system dynamics software to develop the model and acquired data for the model from literature and field studies on alligator ecology. Although widely applicable across the species range and for other crocodilians, we used the Texas alligator management program as an example for model use. Results of model simulations showed that current harvest (50% egg harvest, 2% subadult harvest, 2% adult harvest) is sustainable, but alligator populations will stabilize at levels below population potential. The best harvest scenario for a sustainable harvest that maintains alligator populations at a relatively unchanging level is a 38% egg harvest, 2% subadult harvest, and 2% adult harvest. An elevated egg harvest (80%) can be sustained if no hunting harvest occurs. Contrarily, an increased hunting harvest (4% subadult, 4% adult) can be sustained with no egg harvest. This model identifies the function of current alligator harvest within populations and provides a tool for future use in determining the effect of changes in harvest or life-history characteristics on alligator population dynamics.
We studied female Gopherus morafkai reproduction for 10 yr to evaluate reproductive variation and environmental factors that influenced reproduction. In contrast to vitellogenesis in other Gopherus, substantial follicle growth occurred during the spring after emergence from hibernation. Vitellogenesis and egg production varied considerably among individuals. The smallest egg-producing female had a carapace length of 220 mm, and no female produced more than one clutch per year. Compared to small females, large females were more likely to reproduce in a given year and produced larger eggs, but body size did not affect clutch size. Good maternal body condition contributed to follicle growth in winter, larger clutches, and larger eggs in a clutch. Females that emerged from hibernation earlier were more likely to produce eggs. Early-emerging females also produced larger eggs than did females that emerged later. These reproductive traits contribute to a life history that resembles an income breeder compared to the more capital-breeding strategy of the closely related Mojave Desert Tortoise (Gopherus agassizii). These life history differences might convey different reproductive and population consequences of climate change.
Eli Greenbaum, Stephanie Dowell Beer, Daniel F. Hughes, Philipp Wagner, Christopher G. Anderson, Cesar O. Villanueva, Patrick K. Malonza, Chifundera Kusamba, Wandege M. Muninga, Mwenebatu M. Aristote, William R. Branch
Jackson's Forest Lizard (Adolfus jacksoni) is widespread throughout the highlands of the Albertine Rift, southern Uganda, western and central Kenya, and northern Tanzania. To understand the population genetics and phylogenetic relationships of this widespread taxon, we sequenced two mitochondrial (16S and cyt b) and two nuclear (c-mos and RAG1) genes from multiple populations. Population genetics analyses suggested a high degree of genetic differentiation among A. jacksoni populations, reflecting the high-elevation montane “islands” that they inhabit. Populations connected by a network of mountain ranges generally showed lower levels of genetic partitioning than those isolated by low-elevation habitat. Results from phylogenetic analyses and additional morphological data indicated that Adolfus jacksoni occurs throughout the Albertine Rift, likely from the Kabobo Plateau to the Lendu Plateau of Democratic Republic of the Congo, as well as southern Uganda, Mt. Elgon, and the highlands of western Kenya on the western side of the Kenyan Rift. Adolfus kibonotensis is removed from the synonymy of the latter taxon, elevated to full species, and recognized from the central Kenyan highlands to northern Tanzania on the eastern side of the Kenyan Rift. A new Adolfus species is described from the Mathews Range in central Kenya.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere