Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Pieces of coral rubble (Porites porites), collected from across 3 fringing reefs that lie along a eutrophication gradient, were examined for the presence of clionid sponges. A similarity analysis of species composition showed that reef zone had less effect on clionid community composition than did other factors affecting the reefs as a whole. Except on the back reef, the Lones, distances, and depths within the reefs had no significant influence on the number of clionid invasions. Reef comparisons demonstrated that clionid abundance increased with increasing eutrophication. Clionids were found in 41% of the pieces collected from the most eutrophic site vs. 24% from the least eutrophic. Because clionids are the principal bioeroders of coral reefs, any increase in their abundance will likely result in greater bioerosion rates. The mean abundance of Type 3 corals (in which fragmentation is the primary mode of propagation) is positively related to the frequency of boring sponge invasion. suggesting that increased bioerosion may be partly responsible for community shifts toward Type 3 corals in polluted waters. Cliona cf. vastifica, found for the first time in Barbados, flourishes on the most eutrophic reef and may become an important bioeroder under the highly eutrophic conditions that have begun to plague West Indian reefs. Two new species of Cliona (Porifera: Hadromerida: Clionidae) are described.
Temperate sea anemones in the genus Anthopleura are unique among cnidarians in harboring two phylogenetically distinct symbiotic algae, zooxanthellae (golden-brown dinophytes, Symbiodinium) and zoochlorellae (green chlorophytes). To determine whether their physiological differences generate patterns in anemone habitat and biogeographic distribution, we sampled symbiotic algae in the small clonal A. elegantissima and the large solitary A. xanthogrammica at 8 field sites (and the other large solitary Anthopleura species at one site) spanning 18° of latitude along 2500 km of the Pacific coast of North America. We found that zoochlorellae predominate in low intertidal habitats and northerly latitudes and in A. xanthogrammica, while zooxanthellae constitute the majority of symbionts in high intertidal habitats and more southerly latitudes and in A. elegantissima. These data are consistent with published predictions based on photosynthetic efficiency of the two algae under varied temperature and light regimes in the laboratory. This anemone-algal system provides a potential biological signal of benthic intertidal communities' responses to El Niño events and long-term climate changes in the Pacific.
Setae of the first segment of the marine annelid Sthenelais berkeleyi (family Sigalionidae) are arranged in the shape of an antero-dorsally directed tube. When the worm is in resting position buried in sediment, this setal tube projects slightly from the sediment surface. A current of water is drawn into it by cilia on the parapodia of the first segment. The water is then diverted to a pair of lateral spaces between the body wall and elytra, moved posteriorly in these spaces along the length of the body by segmental cilia, and eventually exits posteriorly or ventrally. This flow permits the worm to respire while remaining buried and immobile for long periods of time, waiting for prey to move over the sediment near it. Setae of the first segment are probably used as snorkels in some other infaunal sigalionids as well.
The ultrastructure of the thin, non-cellular cuticle is described for 6 marine oligochaetes, representing 3 of the subfamilies (Phallodrilinae, Limnodriloidinae, and Rhyacodrilinae) of the Tubificidae. The main components of the cuticle in these 6 species, as in most other oligochaetes examined, are: (1) a fiber zone closest to the epidermis, consisting of collagen fibers embedded in a matrix, (2) an epicuticle, which is a continuation of the matrix outside the fiber zone, and (3) epicuticular projections, which are membrane-bound bodies covering the outer surface of the epicuticle. The projections are probably formed by the microvilli that penetrate the cuticle from the epidermal cells below, but this was confirmed only in the studied limnodriloidines. Three of the species examined, Duridrilus turdus, Oluvius vacuus, and Heterodrilus paucifascis, lack microvilli. The morphology of the components in the cuticle differs between the studied species. The collagen fibers may form an “orthogonal grid” (i.e., layers of parallel fibers perpendicular to the layers immediately above and below), or they may form parallel layers, or be irregularly scattered. The number of dense layers in the epicuticle, as well as the shape and internal structure of the epicuticular projections, also vary. All these characters might be useful in future phylogenetic analyses to achieve better hypotheses of relationships within oligochaetes as well as to other groups.
Ceratal autotomy by the aeolid nudibranch Phidinna crassicornis is common in the field and was induced in the laboratory by mechanical and predatory stimuli. The ceras detaches from the body wall along an autotomy plane located at its basal constriction. Cerata released copious amounts of mucus during autotomy and exhibited a prolonged writhing response that continued for several hours after detachment. Regeneration of cerata autotomized in the field and in the laboratory was documented. Four days after autotomy, regenerating cerata appeared as small protuberances. By day 24 the regenerates acquired their mature structural organisation and vivid colour. The cerata subsequently increased in length and diameter and were indistinguishable from surrounding cerata by 41 to 43 days after autotomy. Regeneration rates of cerata induced to autotomize in the laboratory and regeneration of cerata autotomized in the field were similar, averaging 0.08 and 0.067 md/day, respectively. The sequence of morphological events involved with regeneration following experimental and natural induction of autotomy was identical. The kelp crab Pugettia productn induced autotomy by holding cerata with its chelae. This crab also fed on autotomized cerata and consumed locomotory and ceratal mucus. Ceratal autotomy may be an important mechanism of escape from this predatory crustacean. Other potential predators including hermit crabs and tidepool sculpins did not elicit defensive behaviour in P. crussicornis. Nematocysts were present in the cnidosacs and their role in defense was investigated. Fired nematocysts were observed in podia of the asteroid Crossaster papposus following ceratal contact but were not seen in the podia of Pycnopodia helianthoides in a similar trial. For P. crassicornis, the cnidosacs may function primarily as a storage device for safe sequestering of nematoeysts that could pose a threat to the digestive system. They did not play a major defensive role against the predators tested, but may be important in the field against other predators.
Torsion is a process in gastropod ontogenesis where the visceral body portion rotates 180” relative to the headfoot region. We investigated this process in the limpet Patella caerulea by using light microscopy of living larvae, as well as scanning electron microscopy (SEM) of larvae fixed during the torsion process. The completion of the 180° twist takes considerably less time in larvae of Patella caerulea than previously described for other basal gastropod species. At a rearing temperature of 20–22°C, individuals complete ontogenetic torsion in ∼2 h. Furthermore, the whole process is monophasic, i.e., carried out at a constant speed, without any evidence of distinct “fast” or “slow” phases. Both larval shell muscles—the main and the accessory larval retractor—are already fully contractile before the onset of torsion. During the torsion process both retractors perform cramp-like contractions at ∼30 s intervals, which are followed by hydraulic movements of the foot. However, retraction into the embryonic shell occurs only after torsion is completed. The formation of the larval operculum is entirely independent from ontogenetic torsion and starts before the onset of rotation, as does the mineralization of the embryonic shell. The reported variability regarding the timing (mono- versus biphasic; duration) of torsion in basal gastropod species precludes any attempt to interpret these data phylogeneticaliy.
The present findings indicate that the torsion process in Patella caerulea, and probably generally in basal gastropods, is primarily caused by contraction of the larval shell muscles in combination with hydraulic activities. In contrast, the adult shell musculature, which is independently formed after torsion is completed, does not contribute to ontogenetic torsion in any way. Thus, fossil data relying on muscle scars of adult shell muscles alone appear inappropriate to prove torted or untorted conditions in early Paleozoic univalved molluscs. Therefore, we argue that paleontological studies dealing with gastropod phylogeny require data other than those based on fossilized attachment sites of adult shell muscles.
The adoral sense organ in bivalve molluscs is a paired ridge of specialized epithelium positioned laterally at the base of the labial palps near the mouth opening, clearly distinguishable from the surrounding epithelia. Six species of the protobranch order Nuculoida, and one species of Solemyoida, were investigated by light microscopy concerning presence, gross anatomy, and innervation of the adoral sense organ. The organ was described in detail for Nucula nucleus and N. nitidosa by transmission electron microscopy; in these two species, the organ was characterized as a pseudostratified epithelial thickening with specialized cells bearing a specialized microvillar border and a basal matrix with a lamellar layer. Three types of bipolar primary receptor cells were recognized and these were reconstructed for N. nucleus. Most of the receptor cells had 2 cilia orientated parallel to the cell surface; in addition, there were 2 types of supporting cells and 1 type of basal cell. The surrounding epithelial cells were narrow with short microvilli and lacked cilia. The homology of the organ within protobranch bivalves was suggested by a character-complex of (1) position, (2) dimension of the epithelium, (3) innervation, (4) pseudostratified construction, (5)dimension of the specialized microvillar border, (6) thickening of the basal matrix, and (7) presence of specialized cell types such as receptor cells. Despite the estimated high number of protobranch species there is only scant information available on the adoral sense organ from 24 species of 8 genera. Structures and receptor types that are similar to those found in the adoral sense organ are widespread in molluscs and other invertebrate groups; this may indicate a plesiomorphy of these characters rather than an apomorphy for the protobranch clade. Therefore, the adoral sense organ may be of minor phylogenetic value above the level of protobranch orders.
Androdioecy is a rare form of mating system in which species comprise males and hermaphrodites. One recently described case of androdioecy is the freshwater crustacean Eulimnadia texana. A mathematical model of the mating system of this shrimp suggests that males and hermaphrodites should only coexist under limited circumstances. One possible factor not considered in this model would extend the conditions for coexistence: the possibility of sperm storage in the hermaphrodites. Here we use genetically marked matings between males and hermaphrodites to determine if hermaphrodites can store male sperms. Eggs were collected from hermaphrodites both in the presence of a male and after the male was removed. A total of 30 of these matings had successful hatches, but only 14 of these 30 could be used to test for sperm storage. In these 14 cases, an average of 35% of the eggs were outcrossed when males were present, but only 0.4% were outcrossed after males were removed. Thus, sperm storage by hermaphrodites was an insignificant factor in the production of offspring. These data suggest that sperm storage cannot help explain the coexistence of males and hermaphrodites in natural populations of this crustacean.
The morphology of Astrobrachion constrictum, a representative of the little known Euryalida, was examined by light and electron microscopy. The tegument is smooth and lacks calcified elements. Many features of A. constrictum were found to conform to the usual pattern of ophiuroid anatomy. The skeletal elements are generally composed of uniform labyrinthic stereom. The radial shields, however, consist of overlapping stereom plates. The 5 oral shields serve as madreporites, each with a U-shaped canal leading into an axial sinus. A 3-lobed axial organ is associated with each madreporite and may play some sensory or secretory role.
The oral surface and mouth of juvenile asteroids and echinoids with indirect development forms on the lower left side of the larval body, thus establishing a new axis of body symmetry. In contrast, the juvenile mouth of ophiuroids and holothuroids develops from the larval one, and the larval and adult body axes roughly coincide. Explaining how two such disparate modes of development arose in evolution has been a perennial problem for echinoderm biologists, but recent observations on larval budding in asteroids may provide an answer. The juvenile mouth of asteroids forms near the base of the left posterolateral lobe. The posterolateral lobes are also the principal site of bud formation in asteroid larvae that propagate asexually, and buds form mouths. By accelerating the development of oral and ectodermal structures belonging to the bud, and combining these with internal organs derived from the parent larva, a composite individual could be constructed with the same orientation and positioning as the juvenile rudiment in asteroids. Whether this also explains the position of the juvenile rudiment in echinoids is a more complex question, depending in part on whether asexual propagation is derived, and restricted to asteroids and ophiuroids, or is more primitive and hence widespread among stem echinoderms.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere